Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

Train AI (Keras + Tensorflow) to defend apps with Django REST Framework + Celery + Swagger + JWT - deploys to Kubernetes and OpenShift Container Platform
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

ai ai-security anti-nex celery celery-tasks deep-neural-networks django-rest-framework drf jwt keras machine-learning machine-learning-security network-analysis network-security openshift rest-api swagger tensorflow

Last synced: about 2 months ago
JSON representation

Train AI (Keras + Tensorflow) to defend apps with Django REST Framework + Celery + Swagger + JWT - deploys to Kubernetes and OpenShift Container Platform

Awesome Lists containing this project

README

        

AntiNex REST API
================

Automate training AI to defend applications with a Django 2.0+ REST Framework + Celery + Swagger + JWT using Keras and Tensorflow.

Now supports building the same highly accurate deep neural networks as the `AntiNex Core`_ (**99.8%** accuracy with Django, Flask, React + Redux, Vue and Spring). This repository is fully dockerized and after the django celery worker finishes processing, it will auto-push predictions to the core's celery worker which is decoupled from django and the django database. The core's celery worker stores pre-trained AI neural networks in memory for faster predictions and supports re-training models as needed.

For those wanting to scale up their processing speeds, `AntiNex deploys on OpenShift Container Platform and Kubernetes `__ with persistent database volumes for Postgres (`Crunchy Data `__) and Redis (`Bitnami `__)

.. image:: ./tests/images/django-rest-framework-with-swagger-and-jwt-trains-a-deep-neural-network-using-keras-and-tensorflow-with-83-percent-accuracy.gif
:width: 200px
:height: 400px

.. _AntiNex Core: https://github.com/jay-johnson/antinex-core#antinex-core

AntiNex Stack Status
--------------------

The AntiNex REST API is part of the AntiNex stack:

.. list-table::
:header-rows: 1

* - Component
- Build
- Docs Link
- Docs Build
* - `REST API `__
- .. image:: https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg?branch=master
:alt: Travis Tests
:target: https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex/badge/?version=latest
:alt: Read the Docs REST API Tests
:target: https://readthedocs.org/projects/antinex/badge/?version=latest
* - `Core Worker `__
- .. image:: https://travis-ci.org/jay-johnson/antinex-core.svg?branch=master
:alt: Travis AntiNex Core Tests
:target: https://travis-ci.org/jay-johnson/antinex-core.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex-core-worker/badge/?version=latest
:alt: Read the Docs AntiNex Core Tests
:target: http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
* - `Network Pipeline `__
- .. image:: https://travis-ci.org/jay-johnson/network-pipeline.svg?branch=master
:alt: Travis AntiNex Network Pipeline Tests
:target: https://travis-ci.org/jay-johnson/network-pipeline.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
:alt: Read the Docs AntiNex Network Pipeline Tests
:target: https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
* - `AI Utils `__
- .. image:: https://travis-ci.org/jay-johnson/antinex-utils.svg?branch=master
:alt: Travis AntiNex AI Utils Tests
:target: https://travis-ci.org/jay-johnson/antinex-utils.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex-ai-utilities/badge/?version=latest
:alt: Read the Docs AntiNex AI Utils Tests
:target: http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
* - `Client `__
- .. image:: https://travis-ci.org/jay-johnson/antinex-client.svg?branch=master
:alt: Travis AntiNex Client Tests
:target: https://travis-ci.org/jay-johnson/antinex-client.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex-client/badge/?version=latest
:alt: Read the Docs AntiNex Client Tests
:target: https://readthedocs.org/projects/antinex-client/badge/?version=latest

Supported API Requests
----------------------

- `Prepare a Dataset`_
- `Train a Deep Neural Network from a Prepared Dataset using Keras and Tensorflow`_
- `Multi-Tenant Deep Neural Network Training with Simulations`_
- `Get recent Training jobs (including Models as json and weights)`_
- `Get recent Training results (nice for reviewing historical accuracy)`_
- `Get recent Prepared Datasets`_
- `Creating and managing users`_

.. _Prepare a Dataset: https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#prepare-a-new-dataset-from-captured-recordings
.. _Train a Deep Neural Network from a Prepared Dataset using Keras and Tensorflow: https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#train-a-keras-deep-neural-network-with-tensorflow
.. _Multi-Tenant Deep Neural Network Training with Simulations: https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#multi-tenant-simulations
.. _Get recent Training jobs (including Models as json and weights): https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#get-recent-ml-job-results
.. _Get recent Training results (nice for reviewing historical accuracy): https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#get-recent-ml-jobs
.. _Get recent Prepared Datasets: https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#get-recent-prepared-datasets
.. _Creating and managing users: https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#swagger

This repository was built to help capture ``non-attack`` network traffic and to improve the accuracy of the Keras + Tensorflow Deep Neural Networks by providing them a simple multi-tenant REST API that has Swagger + JWT authentication baked into a single web application. By default, all created Deep Neural Networks are automatically saved as JSON including model weights. It also does not require a database (unless you want to set it up), and will be scaled out with `Celery Connectors`_ in the future. Please refer to the `Network Pipeline`_ repository for more details. This Django application server also comes with a functional Celery worker for running heavyweight, time-intensive tasks required for asynchronous use cases. This is good for when you are trying to train a deep net that takes a few minutes, and you do not want your HTTP client to time out.

.. _Network Pipeline: https://github.com/jay-johnson/network-pipeline
.. _Celery Connectors: https://github.com/jay-johnson/celery-connectors

I plan to automate the tests in a loop and then release the captured HTTP traffic to compile the first ``non-attack`` dataset for pairing up with the OWASP ``attack`` data which is already recorded and available in:

https://github.com/jay-johnson/network-pipeline-datasets

Update: 2018-02-25 - These merged datasets and accuracies are now available in the repository:

https://github.com/jay-johnson/antinex-datasets

Watch Getting Started
=====================

Assuming your host has the pips already cached locally this takes about a minute.

.. raw:: html

Install
=======

Tested on Ubuntu 17.10, Ubuntu 18.04 and works on `OpenShift Container Platform with Kubernetes `__.

::

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /opt/antinex/api
cd /opt/antinex/api
./install.sh

Getting Started With Docker
===========================

You can run without these optional steps and just use the default SQLite database. If you want to use docker and download all the containers, you can use the ``compose.yml`` file to start all of the containers and download the latest ``ai-core`` docker image which is ~2.5 GB on disk (built with `Dockerfile`_ and stored on `Docker Hub`_).

.. _Dockerfile: https://github.com/jay-johnson/antinex-core/blob/master/docker/Dockerfile
.. _Docker Hub: https://hub.docker.com/r/jayjohnson/ai-core/

To start all run:

::

# if you do not have docker compose installed, you can try installing it with:
# pip install docker-compose
./run-all.sh

Verify the containers started

::

docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
d34c8973066b jayjohnson/antinex-pipeline:latest "/bin/sh -c 'cd /opt…" 2 hours ago Up 2 hours pipeline
12ef5482bc17 jayjohnson/antinex-worker:latest "/bin/sh -c 'cd /opt…" 2 hours ago Up 2 hours worker
da7970ae165f jayjohnson/antinex-api:latest "/bin/sh -c 'cd /opt…" 2 hours ago Up 2 hours api
11a2c95b7247 jayjohnson/antinex-core:latest "/bin/sh -c 'cd /opt…" 2 hours ago Up 2 hours core
1f26d89c8c2c jayjohnson/antinex-jupyter:latest "/opt/antinex/core/d…" 2 hours ago Up 2 hours jupyter
4905682ff3b4 postgres:10.4-alpine "docker-entrypoint.s…" 2 hours ago Up 2 hours 0.0.0.0:5432->5432/tcp postgres
fd8300740935 redis:4.0.9-alpine "docker-entrypoint.s…" 2 hours ago Up 2 hours 0.0.0.0:6379->6379/tcp redis
7c682ba78adb jayjohnson/pgadmin4:1.0.0 "python ./usr/local/…" 2 hours ago Up 2 hours 0.0.0.0:83->5050/tcp pgadmin

Quick links
-----------

If you are running all the containers, you can use these links to move around:

- Use Swagger to Train a new Deep Neural Network (login with ``trex`` and ``123321``)

http://localhost:8010/swagger/#!/ml/ml_create

- Jupyter Notebook showing how the Deep Neural Networks are Trained (login with ``admin`` and ``ALT + r`` to view the slideshow)

http://localhost:8888/notebooks/AntiNex-Protecting-Django.ipynb

- Jupyter Notebook shoing how to use Pre-trained Deep Neural Networks with AntiNex

http://localhost:8888/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb

If you are interested in running locally without the large container image, you can run the broker and database stack with docker containers for simulating a more production-ready environment. Here's the containers these steps will start:

#. Postgres 10
#. Redis (Pub/Sub, Caching and Celery Tasks)
#. pgAdmin4 - Web app for managing Postgres

Here's how to run it:

#. Source the environment

::

source envs/drf-dev.env

#. Start the Stack

::

./run-stack.sh
Starting stack: full-stack-dev.yml
Creating postgres ... done
Creating pgadmin ...
Creating postgres ...

#. Verify the containers are running

::

docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
2c7cfbd9328e postgres:10.2-alpine "docker-entrypoint.s…" 3 minutes ago Up 3 minutes 0.0.0.0:5432->5432/tcp postgres
9c34c9588349 jayjohnson/pgadmin4:1.0.0 "python ./usr/local/…" 3 minutes ago Up 3 minutes 0.0.0.0:83->5050/tcp pgadmin
75e325113424 redis:4.0.5-alpine "docker-entrypoint.s…" 3 minutes ago Up 3 minutes 0.0.0.0:6379->6379/tcp redis

#. Initialize the Postgres database

::

export USE_ENV=drf-dev
./run-migrations.sh

#. Login to pgAdmin4

http://localhost:83/browser/

User: ``[email protected]``
Password: ``postgres``

#. Register the Postgres server

#. Right click on "Servers" and then "Create Server"

#. On the "General" tab enter a name like "webapp"

#. On the "Connection" tab enter:

Host: postgres

Username: postgres

Password: postgres

#. Click "Save password?" check box

#. Click the "Save" button

#. Navigate down the tree:

Servers > webapp (or the name you entered) > Databases > webapp > Schemas > public > Tables

#. Confirm there's database tables with names like:

::

pipeline_mljob
pipeline_mljobresult
pipeline_mlprepare

Start
=====

By default, this project uses `gunicorn`_ to start, but you can change to `uwsgi`_ by running ``export APP_SERVER=uwsgi`` before starting. Both app servers should work just fine.

Note: if you are running the docker "full stack" please make sure to run: ``export USE_ENV=drf-dev`` before starting the django application, or you can use ``run-django.sh`` which should do the same as ``start.sh``.

::

./start.sh

Starting Django listening on TCP port 8010
http://localhost:8010/swagger

[2018-02-07 11:27:20 -0800] [10418] [INFO] Starting gunicorn 19.7.1
[2018-02-07 11:27:20 -0800] [10418] [INFO] Listening at: http://127.0.0.1:8010 (10418)
[2018-02-07 11:27:20 -0800] [10418] [INFO] Using worker: sync
[2018-02-07 11:27:20 -0800] [10418] [INFO] DJANGO_DEBUG=yes - auto-reload enabled
[2018-02-07 11:27:20 -0800] [10418] [INFO] Server is ready. Spawning workers
[2018-02-07 11:27:20 -0800] [10422] [INFO] Booting worker with pid: 10422
[2018-02-07 11:27:20 -0800] [10422] [INFO] Worker spawned (pid: 10422)
[2018-02-07 11:27:20 -0800] [10423] [INFO] Booting worker with pid: 10423
[2018-02-07 11:27:20 -0800] [10423] [INFO] Worker spawned (pid: 10423)
[2018-02-07 11:27:20 -0800] [10424] [INFO] Booting worker with pid: 10424
[2018-02-07 11:27:20 -0800] [10424] [INFO] Worker spawned (pid: 10424)
[2018-02-07 11:27:20 -0800] [10426] [INFO] Booting worker with pid: 10426
[2018-02-07 11:27:20 -0800] [10426] [INFO] Worker spawned (pid: 10426)
[2018-02-07 11:27:20 -0800] [10430] [INFO] Booting worker with pid: 10430
[2018-02-07 11:27:20 -0800] [10430] [INFO] Worker spawned (pid: 10430)

.. _gunicorn: http://docs.gunicorn.org/
.. _uwsgi: https://uwsgi-docs.readthedocs.io/en/latest/

Celery Worker
=============

Start the Worker
----------------

Start the Celery worker in a new terminal to process published Django work tasks for heavyweight, time-intensive operations.

::

./run-worker.sh

Create User
-----------

Create the user ``trex`` with password ``123321``:

::

source tests/users/user_1.sh \
&& ./tests/create-user.sh \
&& env | grep API | sort

Creating user: trex on http://localhost:8010/users/
{"id":2,"username":"trex","email":"[email protected]"}
Getting token for user: trex
{"token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjo2LCJ1c2VybmFtZSI6InRyZXgiLCJleHAiOjE1MjgyNjExMjgsImVtYWlsIjoiYnVnc0BhbnRpbmV4LmNvbSJ9.W6Lb2N1v8S3e6EMT7RuTvfUQMTbKjrmYzhMxtFQ9jhk"}
API_DEBUG=false
[email protected]
API_FIRSTNAME=Guest
API_LASTNAME=Guest
API_PASSWORD=123321
API_URL=http://localhost:8010
API_USER=trex
API_VERBOSE=true

Automation
==========

All of these scripts run in the ``tests`` directory:

::

cd tests

Make sure the virtual environment has been loaded:

::

source ~/.venvs/venvdrfpipeline/bin/activate

Clone the datasets repository
-----------------------------

git clone https://github.com/jay-johnson/network-pipeline-datasets /opt/antinex/datasets

Prepare a new Dataset from Captured Recordings
----------------------------------------------

::

./build-new-dataset.py

.. raw:: html

Train a Keras Deep Neural Network with Tensorflow
-------------------------------------------------

::

./create-keras-dnn.py

...

2018-02-03 00:31:24,342 - create-keras-dnn - INFO - SUCCESS - Post Response status=200 reason=OK
2018-02-03 00:31:24,342 - create-keras-dnn - INFO - {'job': {'id': 1, 'user_id': 2, 'user_name': 'trex', 'title': 'Keras DNN - network-pipeline==1.0.9', 'desc': 'Tensorflow backend with simulated data', 'ds_name': 'cleaned', 'algo_name': 'dnn', 'ml_type': 'keras', 'status': 'initial', 'control_state': 'active', 'predict_feature': 'label_value', 'training_data': {}, 'pre_proc': {}, 'post_proc': {}, 'meta_data': {}, 'tracking_id': 'ml_701552d5-c761-4c69-9258-00d05ff81a48', 'version': 1, 'created': '2018-02-03 08:31:17', 'updated': '2018-02-03 08:31:17', 'deleted': ''}, 'results': {'id': 1, 'user_id': 2, 'user_name': 'trex', 'job_id': 1, 'status': 'finished', 'version': 1, 'acc_data': {'accuracy': 83.7837837300859}, 'error_data': None, 'created': '2018-02-03 08:31:24', 'updated': '2018-02-03 08:31:24', 'deleted': ''}}

.. raw:: html

Create a Highly Accurate Deep Neural Network for Protecting Django
------------------------------------------------------------------

This is the same API request the core uses to build the Django DNN with an accuracy of **99.8%**:

https://github.com/jay-johnson/antinex-core#accuracy-and-prediction-report

with Notebook:

https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb

::

./create-keras-dnn.py -f ./scaler-full-django-antinex-simple.json

Please wait... this can take a few minutes

...

2018-03-21 06:04:48,314 - ml_tasks - INFO - saving job=83 results
2018-03-21 06:04:50,387 - ml_tasks - INFO - updating job=83 results=83
2018-03-21 06:04:53,957 - ml_tasks - INFO - task - ml_job - done - ml_job.id=83 ml_result.id=83 accuracy=99.81788079470199 predictions=30200

Train and Predict with just a Dictionary List of Records
--------------------------------------------------------

This will send a list of records to the API to train and make predictions. This mimics the live-prediction capability in the core for reusing pre-trained DNNs to make predictions faster. I use it to send the newest records to predict, so I do not have to generate lots of csv files everywhere + all-the-time.

::

./create-keras-dnn.py -f ./predict-rows-scaler-full-django.json

Train and Predict using the AntiNex Core
----------------------------------------

This will train and cache a deep neural network using the `AntiNex Core `__. Once trained, the core can make future predictions with the same API call without having to retrain. This makes predictions much faster.

::

./create-keras-dnn.py -f only-publish-scaler-full-django.json

The core trains a deep neural network and persists it in a dictionary that uses the `label value on the request `_ to store the trained model. Future predictions must continue to reuse the same ``label`` value on the request to avoid waiting for a retraining cycle. Here is the `label value used in the previous request `__ which is:

::

"label": "Full-Django-AntiNex-Simple-Scaler-DNN"

Make Predictions for a List of Records
--------------------------------------

If you have a list of records the API, Worker and Core support making predictions for each record in a list.

Predict using the AntiNex Worker:

::

./create-keras-dnn.py -f predict-rows-scaler-full-django.json

Predict using the AntiNex Core:

::

./create-keras-dnn.py -f only-publish-predict-rows-simple.json

Advanced Naming for Multi-Tenant Environments
=============================================

Problems will happen if multiple users are sharing the same host's ``/tmp/`` directory with the default naming conventions. To prevent issues, it is recommended to change the output dataset directory to separate directories per user and to make sure the directories are accessible by the Django server processes. Here's an example of changing the output directory to my user which triggers the custom name detection. This detection means I will see logs for the training command to run with my newly generated dataset and metadata files:

::

mkdir /opt/jay
export OUTPUT_DIR=/opt/jay/
./build-new-dataset.py

...

Train a Neural Network with:
./create-keras-dnn.py /opt/jay/cleaned_attack_scans.csv /opt/jay/cleaned_metadata.json

If changing the output directory is not possible, then users will need to make sure the file names are unique before running. Here's an example naming strategy for the csv datasets and metadata files to prevent collisions. The ``build-new-dataset.py`` script will also suggest the training command to run when you activate custom names:

Prepare a Named Dataset
-----------------------

::

./build-new-dataset.py /tmp/_$(date +"%Y-%m-%d-%H-%m-%N")_full.csv /tmp/_$(date +"%Y-%m-%d-%H-%m-%N")_readytouse.csv

Example that shows the suggested training command to run using the named dataset files on disk:

::

./build-new-dataset.py /tmp/jay_$(date +"%Y-%m-%d-%H-%m-%N")_full.csv /tmp/jay_$(date +"%Y-%m-%d-%H-%m-%N")_readytouse.csv

...

Train a Neural Network with:
./create-keras-dnn.py /tmp/jay_2018-02-05-21-02-274468596_readytouse.csv /tmp/cleaned_meta-54525d8da8a54e9d9005a29c63f2918b.json

Confirm the files were created:

::

ls -lrth /tmp/jay_2018-02-05-21-02-274468596_readytouse.csv /tmp/cleaned_meta-54525d8da8a54e9d9005a29c63f2918b.json
-rw-rw-r-- 1 jay jay 143K Feb 5 21:23 /tmp/jay_2018-02-05-21-02-274468596_readytouse.csv
-rw-rw-r-- 1 jay jay 1.8K Feb 5 21:23 /tmp/cleaned_meta-54525d8da8a54e9d9005a29c63f2918b.json

Please note, if you use filenames and set the ``OUTPUT_DIR`` environment variable, the environment variable takes priority (even if you specify ``/path/to/some/dir/uniquename.csv``). The dataset and metadata files will be stored in the ``OUTPUT_DIR`` directory:

::

echo $OUTPUT_DIR
/opt/jay/

./build-new-dataset.py jay_$(date +"%Y-%m-%d-%H-%m-%N")_full.csv jay_$(date +"%Y-%m-%d-%H-%m-%N")_readytouse.csv

...

Train a Neural Network with:
./create-keras-dnn.py /opt/jay/jay_2018-02-05-22-02-521671337_readytouse.csv /opt/jay/cleaned_meta-2b961845162a4d6e9e382c6f540302fe.json

Swagger
=======

Create a User
-------------

http://localhost:8010/swagger/#!/users/users_create

Click on the yellow ``Example Value`` section to paste in defaults or paste in your version of:

::

{
"username": "trex",
"password": "123321",
"email": "[email protected]"
}

Login User
----------

If you want to login as the super user:

- Username: ``trex``
- Password: ``123321``

http://localhost:8010/api-auth/login/

Logout User
-----------

http://localhost:8010/swagger/?next=/swagger/#!/accounts/accounts_logout_create

JWT
===

Get a Token
-----------

This will validate authentication with JWT is working:

::

./get_user_jwt_token.sh
{"token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjo0LCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTc1OTg3NTIsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.ip3Lj5o4SCK4TARlDuLyw-Dc6qMkt8xUx8WsQwIn2uo"}

(Optional) If you have ``jq`` installed:

::

./get_user_jwt_token.sh | jq
{
"token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjo0LCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTc1OTg3NDEsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.WAIatDGkeFJbH6LL_4rRQaAydZXcE8j0KK7dBnA2GJU"
}

http://localhost:8010/swagger/?next=/swagger/#!/ml/ml_run_create

Development
===========

Swagger Prepare a new Dataset from Captured Recordings
------------------------------------------------------

http://localhost:8010/swagger/#!/mlprepare/mlprepare_create

Paste in the following values and click **Try it Out**:

::

{
"title": "Prepare new Dataset from recordings",
"desc": "",
"ds_name": "new_recording",
"full_file": "/tmp/fulldata_attack_scans.csv",
"clean_file": "/tmp/cleaned_attack_scans.csv",
"meta_suffix": "metadata.json",
"output_dir": "/tmp/",
"ds_dir": "/opt/antinex/datasets",
"ds_glob_path": "/opt/antinex/datasets/*/*.csv",
"pipeline_files": {
"attack_files": []
},
"meta_data": {},
"post_proc": {
"drop_columns": [
"src_file",
"raw_id",
"raw_load",
"raw_hex_load",
"raw_hex_field_load",
"pad_load",
"eth_dst",
"eth_src",
"ip_dst",
"ip_src"
],
"predict_feature": "label_name"
},
"label_rules": {
"set_if_above": 85,
"labels": [
"not_attack",
"attack"
],
"label_values": [
0,
1
]
},
"version": 1
}

Swagger Train a Keras Deep Neural Network with Tensorflow
---------------------------------------------------------

http://0.0.0.0:8010/swagger/#!/ml/ml_create

Paste in the following values and click **Try it Out**:

#. Build the Django DNN for Predicting Network Attacks

::

{
"label": "Full-Django-AntiNex-Simple-Scaler-DNN",
"dataset": "/opt/antinex/antinex-datasets/v1/webapps/django/training-ready/v1_django_cleaned.csv",
"ml_type": "classification",
"predict_feature": "label_value",
"features_to_process": [

],
"ignore_features": [

],
"sort_values": [

],
"seed": 42,
"test_size": 0.2,
"batch_size": 32,
"epochs": 15,
"num_splits": 2,
"loss": "binary_crossentropy",
"optimizer": "adam",
"metrics": [
"accuracy"
],
"histories": [
"val_loss",
"val_acc",
"loss",
"acc"
],
"model_desc": {
"layers": [
{
"num_neurons": 200,
"init": "uniform",
"activation": "relu"
},
{
"num_neurons": 1,
"init": "uniform",
"activation": "sigmoid"
}
]
},
"label_rules": {
"labels": [
"not_attack",
"not_attack",
"attack"
],
"label_values": [
-1,
0,
1
]
},
"version": 1
}

#. Prototyping with a List of Records

I use this script to convert a configurable number of records from the bottom of a csv file which helps build these type of prediction json files:

https://github.com/jay-johnson/antinex-core/blob/master/antinex_core/scripts/convert_bottom_rows_to_json.py

::

./create-keras-dnn.py -f ./readme-predict-demo-1.json

Here are the contents of ``./tests/readme-predict-demo-1.json``

::

{
"label": "Prediction-Model-Prototyping",
"predict_rows": [
{
"_dataset_index": 1,
"label_value": 1,
"more_keys": 54.0
},
{
"_dataset_index": 2,
"label_value": 1,
"more_keys": 24.0
},
{
"_dataset_index": 2,
"label_value": 0,
"more_keys": 33.0
}
],
"ml_type": "classification",
"predict_feature": "label_value",
"features_to_process": [
"more_keys"
],
"ignore_features": [
],
"sort_values": [
],
"seed": 42,
"test_size": 0.2,
"batch_size": 32,
"epochs": 15,
"num_splits": 2,
"loss": "binary_crossentropy",
"optimizer": "adam",
"metrics": [
"accuracy"
],
"histories": [
"val_loss",
"val_acc",
"loss",
"acc"
],
"model_desc": {
"layers": [
{
"num_neurons": 200,
"init": "uniform",
"activation": "relu"
},
{
"num_neurons": 1,
"init": "uniform",
"activation": "sigmoid"
}
]
},
"label_rules": {
"labels": [
"not_attack",
"not_attack",
"attack"
],
"label_values": [
-1,
0,
1
]
},
"version": 1
}

#. Deprecated - Using just CSV files

::

{
"csv_file": "/tmp/cleaned_attack_scans.csv",
"meta_file": "/tmp/cleaned_metadata.json",
"title": "Keras DNN - network-pipeline==1.0.9",
"desc": "Tensorflow backend with simulated data",
"ds_name": "cleaned",
"algo_name": "dnn",
"ml_type": "keras",
"predict_feature": "label_value",
"training_data": "{}",
"pre_proc": "{}",
"post_proc": "{}",
"meta_data": "{}",
"version": 1
}

Verify the Celery Worker Processes a Task without Django
--------------------------------------------------------

I find the first time I integrate Celery + Django + Redis can be painful. So I try to validate Celery tasks work before connecting Celery to Django over a message broker (like Redis). Here is a test tool for helping debug this integration with the `celery-loaders`_ project. It's also nice not having to click through the browser to debug a new task.

#. Run the task test script

::

./run-celery-task.py -t drf_network_pipeline.users.tasks.task_get_user -f tests/celery/task_get_user.json
2018-06-05 22:41:39,426 - run-celery-task - INFO - start - run-celery-task
2018-06-05 22:41:39,426 - run-celery-task - INFO - connecting Celery=run-celery-task broker=redis://localhost:6379/9 backend=redis://localhost:6379/10 tasks=['drf_network_pipeline.users.tasks']
2018-06-05 22:41:39,427 - get_celery_app - INFO - creating celery app=run-celery-task tasks=['drf_network_pipeline.users.tasks']
2018-06-05 22:41:39,470 - run-celery-task - INFO - app.broker_url=redis://localhost:6379/9 calling task=drf_network_pipeline.users.tasks.task_get_user data={'celery_enabled': True, 'cache_key': None, 'use_cache': False, 'data': {'user_id': 2}}
2018-06-05 22:41:39,535 - run-celery-task - INFO - calling task=drf_network_pipeline.users.tasks.task_get_user - started job_id=4931e1fc-3610-4259-8ccd-5724a1c50c79
2018-06-05 22:41:39,549 - run-celery-task - INFO - calling task=drf_network_pipeline.users.tasks.task_get_user - success job_id=4931e1fc-3610-4259-8ccd-5724a1c50c79 task_result={'status': 0, 'err': '', 'task_name': '', 'data': {'id': 2, 'username': 'trex', 'email': '[email protected]'}, 'celery_enabled': True, 'use_cache': False, 'cache_key': None}
2018-06-05 22:41:39,549 - run-celery-task - INFO - end - run-celery-task

#. Verify the Celery Worker Processed the Task

If Redis and Celery are working as expected, the logs should print something similar to the following:

::

2018-06-06 05:41:39,535 - celery.worker.strategy - INFO - Received task: drf_network_pipeline.users.tasks.task_get_user[4931e1fc-3610-4259-8ccd-5724a1c50c79]
2018-06-06 05:41:39,537 - user_tasks - INFO - task - task_get_user - start req_node={'celery_enabled': True, 'cache_key': None, 'use_cache': False, 'data': {'user_id': 2}}
2018-06-06 05:41:39,537 - user_tasks - INFO - finding user=2 cache=False
2018-06-06 05:41:39,539 - celery.worker.request - DEBUG - Task accepted: drf_network_pipeline.users.tasks.task_get_user[4931e1fc-3610-4259-8ccd-5724a1c50c79] pid:26
2018-06-06 05:41:39,547 - user_tasks - INFO - found user.id=2 name=trex
2018-06-06 05:41:39,547 - user_tasks - INFO - task - task_get_user result={'status': 0, 'err': '', 'task_name': '', 'data': {'id': 2, 'username': 'trex', 'email': '[email protected]'}, 'celery_enabled': True, 'use_cache': False, 'cache_key': None} - done
2018-06-06 05:41:39,550 - celery.app.trace - INFO - Task drf_network_pipeline.users.tasks.task_get_user[4931e1fc-3610-4259-8ccd-5724a1c50c79] succeeded in 0.013342023004952352s: {'status': 0, 'err': '', 'task_name': '', 'data': {'id': 2, 'username': 'trex', 'email': '[email protected]'}, 'celery_enabled': True, 'use_cache': False, 'cache_key': None}

.. _celery-loaders: https://github.com/jay-johnson/celery-loaders

Additional Legacy Client API Tools
----------------------------------

These tools and examples were created before the `AntiNex Python Client `__ was released. Please use that for official API examples.

Get a Prepared Dataset
======================

::

export PREPARE_JOB_ID=1
./get-a-prepared-dataset.py

.. raw:: html

Get an ML Job
=============

Any trained Keras Deep Neural Network models are saved as an ``ML Job``.

::

export JOB_ID=1
./get-a-job.py

.. raw:: html

Get an ML Job Result
====================

::

export JOB_RESULT_ID=1
./get-a-result.py

.. raw:: html

Get Recent Prepared Datasets
============================

::

./get-recent-datasets.py

.. raw:: html

Get Recent ML Jobs
==================

::

./get-recent-jobs.py

.. raw:: html

Get Recent ML Job Results
=========================

This is nice for reviewing historical accuracy as your tune your models.

::

./get-recent-results.py

.. raw:: html

Run Tests
---------

The unit tests can be run:

::

./run-tests.sh

...

PASSED - unit tests

Or run a single test

::

source envs/dev.env; cd webapp; source ~/.venvs/venvdrfpipeline/bin/activate
python manage.py test drf_network_pipeline.tests.test_ml.MLJobTest

Multi-Tenant Simulations
========================

Simulations run from the ``./tests/`` directory.

::

cd tests

Run the default ``user1`` simulation in a new terminal:

::

./run-user-sim.py

In a new terminal start ``user2`` simulation:

::

./run-user-sim.py user2

In a new terminal start ``user3`` simulation:

::

./run-user-sim.py user3

Want to check how many threads each process is using?
-----------------------------------------------------

It appears that either Keras or Tensorflow are using quite a bit of threads behind the scenes. On Ubuntu you can view the number of threads used by ``gunicorn`` or ``uwsgi`` with these commands:

::

ps -o nlwp $(ps awuwx | grep django | grep -v grep | awk '{print $2}')

If you're running ``uwsgi`` instead of the ``gunicorn`` use:

::

ps -o nlwp $(ps awuwx | grep uwsgi | grep -v grep | awk '{print $2}')

Stop Full Stack
===============

If you are running the "full stack", then you can run this command to stop the docker containers:

::

./stop-stack.sh

Testing
-------

#. Set up the Testing Runtime and Environment Variables

::

source ~/.venvs/venvdrfpipeline/bin/activate
source ./envs/dev.env

#. Change to the ``webapp`` directory

Tests need to run in the same directory as the ``manage.py``

::

cd webapp

#. Run all Tests

::

python manage.py test

#. Run all Test Cases in a Test module

::

python manage.py test drf_network_pipeline.tests.test_ml

#. Run a Single Test Case

::

python manage.py test drf_network_pipeline.tests.test_ml.MLJobTest.test_ml_predict_helper_works

or

::

python manage.py test drf_network_pipeline.tests.test_user.AccountsTest.test_create_user_with_invalid_email

Linting
-------

flake8 .

pycodestyle --exclude=.tox,.eggs,migrations

License
-------

Apache 2.0 - Please refer to the LICENSE_ for more details

.. _License: https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/master/LICENSE

Citations and Included Works
============================

Special thanks to these amazing projects for helping make this easier!

Original Django project template from
-------------------------------------
https://github.com/jpadilla/django-project-template

Django REST Framework
---------------------
https://github.com/encode/django-rest-framework

Celery
------

http://www.celeryproject.org/

User Registration
-----------------
https://github.com/szopu/django-rest-registration

Swagger for Django
------------------
https://github.com/marcgibbons/django-rest-swagger

JWT for Django REST
-------------------
https://github.com/GetBlimp/django-rest-framework-jwt

Keras
-----
https://github.com/keras-team/keras

Tensorflow
----------
https://github.com/tensorflow

SQLite
------
https://www.sqlite.org/index.html

Gunicorn
--------

http://docs.gunicorn.org/

uWSGI
-----

https://uwsgi-docs.readthedocs.io/en/latest/

pgAdmin
-------

https://www.pgadmin.org/

PostgreSQL
----------

https://www.postgresql.org/

Django Cacheops
---------------

https://github.com/Suor/django-cacheops