An open API service indexing awesome lists of open source software.

https://github.com/jayleicn/tvqa

[EMNLP 2018] PyTorch code for TVQA: Localized, Compositional Video Question Answering
https://github.com/jayleicn/tvqa

dataset pytorch tvqa videoqa

Last synced: 6 months ago
JSON representation

[EMNLP 2018] PyTorch code for TVQA: Localized, Compositional Video Question Answering

Awesome Lists containing this project

README

          

# TVQA
PyTorch code accompanies our EMNLP 2018 paper:

[TVQA: Localized, Compositional Video Question Answering](https://arxiv.org/abs/1809.01696)

[Jie Lei](http://www.cs.unc.edu/~jielei/), [Licheng Yu](http://www.cs.unc.edu/~licheng/),
[Mohit Bansal](http://www.cs.unc.edu/~mbansal/), [Tamara L. Berg](http://tamaraberg.com/)

**Updates 2022-10-24:** Our original web server is down due to a hardware failure, please access data, website, and submission/leaderboard from this [new link](https://nlp.cs.unc.edu/data/jielei/tvqa/tvqa_public_html).

## Resources
- Data: [TVQA dataset](http://tvqa.cs.unc.edu/download_tvqa.html)
- Website: [http://tvqa.cs.unc.edu](http://tvqa.cs.unc.edu).
- Submission/Leaderboard: [TVQA Leaderboard](http://tvqa.cs.unc.edu/leaderboard.html)
- Related works: [TVR (Moment Retrieval)](https://github.com/jayleicn/TVRetrieval), [TVC (Video Captioning)](https://github.com/jayleicn/TVCaption), [TVQA+ (Grounded VideoQA)](https://github.com/jayleicn/TVQAplus)

## Dataset
TVQA is a large-scale video QA dataset based on 6 popular TV shows
(*Friends*, *The Big Bang Theory*, *How I Met Your Mother*, *House M.D.*, *Grey's Anatomy*, *Castle*).
It consists of 152.5K QA pairs from 21.8K video clips, spanning over 460 hours of video.
The questions are designed to be compositional, requiring systems to jointly localize
relevant moments within a clip, comprehend subtitles-based dialogue, and recognize
relevant visual concepts. Download TVQA data from [./data](./data).

- QA example

![qa example](./imgs/example_main.png)

See examples in video: [click here](https://nlp.cs.unc.edu/data/jielei/tvqa/tvqa_public_html/explore.html)
- Statistics

| TV Show | Genre | #Season | #Episode | #Clip | #QA |
|-----------------------|---------|---------|----------|--------|---------|
| The Big Bang Theory | sitcom | 10 | 220 | 4,198 | 29,384 |
| Friends | sitcom | 10 | 226 | 5,337 | 37,357 |
| How I Met Your Mother | sitcom | 5 | 72 | 1,512 | 10,584 |
| Grey's Anatomy | medical | 3 | 58 | 1,472 | 9,989 |
| House M.D. | medical | 8 | 176 | 4,621 | 32,345 |
| Castle | crime | 8 | 173 | 4,698 | 32,886 |
| Total | - | 44 | 925 | 21,793 | 152,545 |

## Model Overview
A multi-stream model, each stream process different contextual inputs.
![model figure](./imgs/model_main.png)

## Requirements:
- Python 2.7
- PyTorch 0.4.0
- tensorboardX
- pysrt
- tqdm
- h5py
- numpy

## Video Features
- ImageNet feature: Extracted from ResNet101,
[Google Drive link](https://drive.google.com/a/cs.unc.edu/file/d/1klm3FUJMCRPJjHZx497MvpGzrSrXgGIl/view?usp=sharing)
- Regional Visual Feature: object-level encodings from object detector (too large to share ...)
- Visual Concepts Feature: object labels and attributes from object detector
[download link](https://nlp.cs.unc.edu/data/jielei/tvqa/files/det_visual_concepts_hq.pickle.tar.gz).

For object detector, we used Faster R-CNN trained on Visual Genome, please refer to this
[repo](https://github.com/peteanderson80/bottom-up-attention).

## Usage

0. Clone this repo

```
git clone https://github.com/jayleicn/TVQA.git
```

1. Download data

Questions, answers and subtitles, etc. can be directly downloaded by executing the following command:
```
bash download.sh
```
For video frames and video features, please visit [TVQA Dwonload Page](http://tvqa.cs.unc.edu/index.html#download).

2. Preprocess data

```
python preprocessing.py
```
This step will process subtitle files and tokenize all textual sentence.

3. Build word vocabulary, extract relevant GloVe vectors

For words that do not exist in GloVe, random vectors `np.random.randn(self.embedding_dim) * 0.4` are used.
`0.4` is the standard deviation of the GloVe vectors
```
mkdir cache
python tvqa_dataset.py
```

4. Training
```
python main.py --input_streams sub
```

5. Inference
```
python test.py --model_dir [results_dir] --mode valid
```

## Results
Please note this is a better version of the original implementation we used for EMNLP paper.
Bascially, I rewrote some of the data preprocessing code and updated the model to the latest
version of PyTorch, etc. By using this code, you should be able to get slightly
higher accuracy (~1%) than our paper.

### Citation
```
@inproceedings{lei2018tvqa,
title={TVQA: Localized, Compositional Video Question Answering},
author={Lei, Jie and Yu, Licheng and Bansal, Mohit and Berg, Tamara L},
booktitle={EMNLP},
year={2018}
}
```

## TODO
1. [x] Add data preprocessing scripts
2. [ ] Add baseline scripts
3. [x] Add model and training scripts
4. [x] Add test scripts

## Contact
Jie Lei, jielei [at] cs.unc.edu