An open API service indexing awesome lists of open source software.

https://github.com/jaytwolab/polygon.circle

Regular n-pronged circumcircle and an inscribed circle :kr: 정n각형의 외접원과 내접원
https://github.com/jaytwolab/polygon.circle

Last synced: about 2 months ago
JSON representation

Regular n-pronged circumcircle and an inscribed circle :kr: 정n각형의 외접원과 내접원

Awesome Lists containing this project

README

        

## Regular n-gon Geometry: Circumscribed and Inscribed Circles

> [English](README.md), [Korean](README.ko.md)

- A **regular n-gon** is a polygon with all sides and angles equal. It can have both a circumscribed circle (circumcircle) and an inscribed circle (incircle).
- The **circumcircle** passes through all vertices of the n-gon.
- The **incircle** is tangent to all sides of the n-gon.

### Circumradius (R) of a Regular n-gon

- For a regular n-gon with side length [![equation](https://latex.codecogs.com/png.latex?%5C%28%20a%20%5C%29)](#) , the radius [![equation](https://latex.codecogs.com/png.latex?%5C%28%20R%20%5C%29)](#) of the circumcircle is calculated as:
\[
[![equation](https://latex.codecogs.com/png.latex?R%20%3D%20%5Cfrac%7Ba%7D%7B2%20%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B%5Cpi%7D%7Bn%7D%5Cright%29%7D)](#)
\]

### Inradius (r) of a Regular n-gon

- The radius [![equation](https://latex.codecogs.com/png.latex?%5C%28%20r%20%5C%29)](#) of the incircle is calculated as:
\[
[![equation](https://latex.codecogs.com/png.latex?r%20%3D%20%5Cfrac%7Ba%7D%7B2%20%5Ccdot%20%5Ctan%5Cleft%28%5Cfrac%7B%5Cpi%7D%7Bn%7D%5Cright%29%7D)](#)
\]

### Example: Regular Pentagon (n = 5)
- For a regular pentagon with side length [![equation](https://latex.codecogs.com/png.latex?%5C%28%20a%20%5C%29)](#) :
- **Circumradius**: [![equation](https://latex.codecogs.com/png.latex?%5C%28%20R%20%3D%20%5Cfrac%7Ba%7D%7B2%20%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B5%7D%5Cright%29%7D%20%5C%29)](#)
- **Inradius**: [![equation](https://latex.codecogs.com/png.latex?%5C%28%20r%20%3D%20%5Cfrac%7Ba%7D%7B2%20%5Ccdot%20%5Ctan%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B5%7D%5Cright%29%7D%20%5C%29)](#)

- These formulas are useful for understanding the geometric properties of regular polygons and have applications in various fields.