https://github.com/jbytecode/de
Dart Language implementation of Differential Evolution Optimization
https://github.com/jbytecode/de
Last synced: 2 months ago
JSON representation
Dart Language implementation of Differential Evolution Optimization
- Host: GitHub
- URL: https://github.com/jbytecode/de
- Owner: jbytecode
- License: mit
- Created: 2020-02-23T17:14:35.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2024-06-21T18:54:01.000Z (11 months ago)
- Last Synced: 2025-01-29T05:34:09.486Z (4 months ago)
- Language: Dart
- Size: 17.6 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README

A Library for Differential Evolution Optimization
## Usage
A simple usage example:
```dart
import 'package:de/de.dart';double f(List x) {
return -(pow(x[0] - 3.14159265, 2.0) + pow(x[1] - exp(1.0), 2.0));
}void main(){
DE de = DE(f, [-500, -500], [500, 500], cr: 0.99, F: 1.20, popsize: 300);
de.iterateN(5000);
Solution best = de.getBest();
print(best);
}
```## Details
* The objective function is always in the form of```dart
double f(List x){}
```* The optimization is always a maximation. If the objective
function of the problem is a minimization, the returned value of the
objective function can be multiplied by -1.0.* The default parameters of the classical Differential Evolution Optimization
are set to cr = 0.8 and F = 1.0. These optimization parameters can be customized
in the constructor of DE class.