Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jeffreyksmithjr/onnxs
ONNX interop for Elixir
https://github.com/jeffreyksmithjr/onnxs
deep-learning deep-neural-networks elixir neural-network onnx
Last synced: 2 months ago
JSON representation
ONNX interop for Elixir
- Host: GitHub
- URL: https://github.com/jeffreyksmithjr/onnxs
- Owner: jeffreyksmithjr
- License: mit
- Created: 2018-04-07T20:42:30.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-04-08T15:52:09.000Z (over 6 years ago)
- Last Synced: 2024-09-23T12:46:13.832Z (3 months ago)
- Topics: deep-learning, deep-neural-networks, elixir, neural-network, onnx
- Language: Elixir
- Size: 4.32 MB
- Stars: 5
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ONNXS
[![Hex.pm](https://img.shields.io/hexpm/v/onnxs.svg)](https://hex.pm/packages/onnxs)
[![Build Status](https://travis-ci.org/jeffreyksmithjr/onnxs.svg?branch=master)](https://travis-ci.org/jeffreyksmithjr/onnxs)_ONNXS_
_/ON-eks-ESS/_
_noun_
_1. ONNX interop for Elixir_
_2. The twenty-first century's yesterday_
## Overview
The [Open Neural Network eXchange format](https://onnx.ai/)(ONNX) is an open format for representing deep learning models.
Because it's an open format [supported by various deep learning frameworks](https://onnx.ai/supported-tools), it enables greater interoperation between different toolchains.ONNXS allows you to decode trained neural network models produced by deep learning frameworks, modify them, and encode them back into the standard ONNX format.
## Installation
The package can be installed by adding onnxs to your list of dependencies in mix.exs:
```
def deps do
[
{:onnxs, "~> 0.2.0"}
]
end
```## Usage
ONNXS allows you to decode saved ONNX models into Elixir structs.
```
iex(1)> {:ok, mnist_data} = File.read "./test/examples/mnist.onnx"
{:ok,
<<8, 3, 18, 4, 67, 78, 84, 75, 26, 3, 50, 46, 52, 40, 1, 58, 227, 206, 1, 10,
199, 80, 18, 12, 80, 97, 114, 97, 109, 101, 116, 101, 114, 49, 57, 51, 26,
12, 80, 97, 114, 97, 109, 101, 116, 101, 114, 49, ...>>}
iex(2)> mnist_struct = Onnx.ModelProto.decode(mnist_data)
%Onnx.ModelProto{
doc_string: nil,
domain: nil,
graph: %Onnx.GraphProto{
doc_string: nil,
initializer: [],
input: [
%Onnx.ValueInfoProto{
doc_string: nil,
name: "Input3",
type: %Onnx.TypeProto{
value: {:tensor_type,
%Onnx.TypeProto.Tensor{
elem_type: 1,
shape: %Onnx.TensorShapeProto
...
ir_version: 3,
metadata_props: [],
model_version: 1,
opset_import: [%Onnx.OperatorSetIdProto{domain: "", version: 1}],
producer_name: "CNTK",
producer_version: "2.4"
}
```Once converted to structs, the models can be modified like any other Elixir struct.
```
iex(3)> mnist_updated = %{mnist_struct | model_version: 2}
```Finally, ONNXS allows you define Elixir data as a struct that can be encoded to valid ONNX.
```
iex(4)> mnist_map = Map.from_struct(mnist_updated)
%{
doc_string: nil,
domain: nil,
...
model_version: 2,
opset_import: [%Onnx.OperatorSetIdProto{domain: "", version: 1}],
producer_name: "CNTK",
producer_version: "2.4"
}
iex(5)> new_mnist_struct = Onnx.ModelProto.new(mnist_map)
%Onnx.ModelProto{
doc_string: nil,
domain: nil,
...
producer_name: "CNTK",
producer_version: "2.4"
}
iex(6)> encoded_mnist = Onnx.ModelProto.encode(new_mnist_struct)
<<8, 3, 18, 4, 67, 78, 84, 75, 26, 3, 50, 46, 52, 40, 2, 58, 227, 206, 1, 10,
199, 80, 18, 12, 80, 97, 114, 97, 109, 101, 116, 101, 114, 49, 57, 51, 26, 12,
80, 97, 114, 97, 109, 101, 116, 101, 114, 49, 57, 51, ...>>
iex(7)> {:ok, file} = File.open "/tmp/mnist_v2.proto", [:write]
{:ok, #PID<0.229.0>}
iex(8)> IO.binwrite file, encoded_mnist
:ok
iex(9)> File.close file
:ok
```## Implementation
This implementation uses [Bing Tony Han](https://github.com/tony612/protobuf-elixir)'s [protobuf-elixir](https://github.com/tony612/protobuf-elixir) library to generate Elixir code from the [ONNX proto file](https://github.com/onnx/onnx/blob/master/onnx/onnx.proto).