Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/jeremiah-shaulov/lemon-tree

Famous Lemon Parser Generator, designed as library that builds your parser transparently during cargo build. Use attributes to describe parser rules.
https://github.com/jeremiah-shaulov/lemon-tree

lalr1 lemon

Last synced: about 2 months ago
JSON representation

Famous Lemon Parser Generator, designed as library that builds your parser transparently during cargo build. Use attributes to describe parser rules.

Awesome Lists containing this project

README

        

# lemon-tree
Famous [Lemon Parser Generator](https://www.hwaci.com/sw/lemon/), designed as library that builds your parser transparently during cargo build. To describe parser rules you add annotation attributes to rust functions, structs and enums.

This crate uses [lemon-mint](https://crates.io/crates/lemon-mint) as backend.

## Installation

Put this to your project's Cargo.toml:

```toml
[dependencies]
lemon-tree = "0.1"
```

## Example

As first example, lets create a calculator program. Create empty cargo project, and put the following to it's main.rs:

```rust
extern crate lemon_tree;

use lemon_tree::{lem_fn, LemonTree};

type Expr = f64; // in lemon this corresponds to: %type Expr {f64}
type Exprs = Vec; // %type Exprs {Vec}

#[lem_fn("NUM(value)")] pub fn expr_1(value: f64) -> Expr {value} // Expr ::= NUM(value). value
#[lem_fn("MINUS Expr(a)")] pub fn expr_2(a: Expr) -> Expr {-a} // Expr ::= MINUS Expr(a). -a
#[lem_fn("PLUS Expr(a)")] pub fn expr_3(a: Expr) -> Expr {a} // Expr ::= PLUS Expr(a). a
#[lem_fn("Expr(a) PLUS Expr(b)")] pub fn expr_4(a: Expr, b: Expr) -> Expr {a + b} // Expr ::= Expr(a) PLUS Expr(b). a + b
#[lem_fn("Expr(a) MINUS Expr(b)")] pub fn expr_5(a: Expr, b: Expr) -> Expr {a - b} // Expr ::= Expr(a) MINUS Expr(b). a - b
#[lem_fn("Expr(a) TIMES Expr(b)")] pub fn expr_6(a: Expr, b: Expr) -> Expr {a * b} // Expr ::= Expr(a) TIMES Expr(b). a * b
#[lem_fn("Expr(a) DIVIDE Expr(b)")] pub fn expr_7(a: Expr, b: Expr) -> Expr {a / b} // Expr ::= Expr(a) DIVIDE Expr(b). a / b
#[lem_fn("PAR_OPEN Expr(a) PAR_CLOSE")] pub fn expr_8(a: Expr) -> Expr {a} // Expr ::= PAR_OPEN Expr(a) PAR_CLOSE. a
#[lem_fn("Expr(item)")] pub fn exprs_1(item: Expr) -> Exprs {vec![item]} // Exprs ::= Expr(item). vec![item]
#[lem_fn("Exprs(items) SEMICOLON Expr(item)")] pub fn exprs_2(mut items: Exprs, item: Expr) -> Exprs {items.push(item); items} // Exprs ::= Exprs(items) SEMICOLON Expr(item). items.push(item); items

// The start symbol is marked with #[derive(LemonTree)]
#[derive(LemonTree)]
#[lem_opt(token_type="f64", left="PLUS MINUS", left="DIVIDE TIMES", trace=">>")]
#[lem("Exprs(exprs) [SEMICOLON]")]
pub struct Program
{ exprs: Exprs,
}
// The above code generates the following lemon directives:
// %start_symbol {Program}
// %token_type {f64}
// %left PLUS MINUS.
// %left DIVIDE TIMES.
// Program ::= Exprs(exprs). Program {exprs}
// Program ::= Exprs(exprs) SEMICOLON. Program {exprs}

// This is tokenizer function. It takes "input", and feeds tokens to the "parser".
fn parse(parser: &mut ::Parser, mut input: &str) -> Exprs
{ loop
{ input = input.trim_start();
match input.bytes().next()
{ Some(c) => match c
{ b'+' => parser.add_token(::Token::PLUS, 0.0).unwrap(),
b'-' => parser.add_token(::Token::MINUS, 0.0).unwrap(),
b'*' => parser.add_token(::Token::TIMES, 0.0).unwrap(),
b'/' => parser.add_token(::Token::DIVIDE, 0.0).unwrap(),
b'(' => parser.add_token(::Token::PAR_OPEN, 0.0).unwrap(),
b')' => parser.add_token(::Token::PAR_CLOSE, 0.0).unwrap(),
b';' => parser.add_token(::Token::SEMICOLON, 0.0).unwrap(),
b'0' ..= b'9' | b'.' =>
{ let pos = input.bytes().position(|c| !c.is_ascii_digit() && c!=b'.').unwrap_or(input.len());
let value = input[.. pos].parse().unwrap();
parser.add_token(::Token::NUM, value).unwrap();
input = &input[pos-1 ..];
}
_ => panic!("Invalid token")
}
None =>
{ // End of input
// parser.end() returns Result
return parser.end().unwrap().exprs;
}
}
input = &input[1 ..];
}
}

fn main()
{ let mut parser = Program::get_parser(());

assert_eq!(parse(&mut parser, "2 + 2 * 2; (2+2) * 2"), vec![6.0, 8.0]);
assert_eq!(parse(&mut parser, "2 * 2 + 2; (2*2) + 2"), vec![6.0, 6.0]);
assert_eq!(parse(&mut parser, "-1*30"), vec![-30.0]);
assert_eq!(parse(&mut parser, "0--1;"), vec![1.0]);
assert_eq!(parse(&mut parser, "(((0)))"), vec![0.0]);
assert_eq!(parse(&mut parser, "0.123 + 10"), vec![10.123]);
assert_eq!(parse(&mut parser, "0.123 / (1.0-1.0)"), vec![f64::INFINITY]);
}
```

You can have several parsers in your project. Each parser must be completely described in one rust file, and `#[derive(LemonTree)]` (the start symbol) must appear the last in the file.

This crate exports 3 symbols: `lem_fn`, `LemonTree` and `LemonTreeNode`.

Need to mark start symbol with `#[derive(LemonTree)]`. This automatic derive trait allows to set parser options with `#[lem_opt()]` attribute, and parser rules with `#[lem()]` attribute.

Symbols other than the start symbol can be declared with module-global functions annotated with `#[lem_fn()]` attribute. This attribute must be exported to the current namespace with `use lemon_tree::lem_fn`.

Another option is to use `LemonTreeNode`:

```rust
use lemon_tree::{lem_fn, LemonTree, LemonTreeNode};

#[derive(LemonTreeNode, Debug, PartialEq)]
pub enum Expr
{ #[lem("NUM(0)")] Num(f64),
#[lem("MINUS Expr(0)")] UnaryMinus(Box),
#[lem("PLUS Expr(0)")] UnaryPlus(Box),
#[lem("Expr(0) PLUS Expr(1)")] Plus(Box, Box),
#[lem("Expr(0) MINUS Expr(1)")] Minus(Box, Box),
#[lem("Expr(0) TIMES Expr(1)")] Times(Box, Box),
#[lem("Expr(0) DIVIDE Expr(1)")] Divide(Box, Box),
}
#[lem_fn("PAR_OPEN Expr(0) PAR_CLOSE")] pub fn expr_from_par(a: Expr) -> Expr {a}

pub type Exprs = Vec;
#[lem_fn("Expr(item)")] fn exprs_item(item: Expr) -> Exprs {vec![item]}
#[lem_fn("Exprs(items) SEMICOLON Expr(item)")] fn exprs_items(mut items: Exprs, item: Expr) -> Exprs {items.push(item); items}

#[derive(LemonTree, Debug)]
#[lem_opt(token_type="f64", left="PLUS MINUS", left="DIVIDE TIMES")]
#[lem("Exprs(exprs) [SEMICOLON]")]
pub struct Program
{ exprs: Vec,
flag: bool,
}

fn parse(parser: &mut ::Parser, mut input: &str) -> Vec
{ loop
{ input = input.trim_start();
match input.bytes().next()
{ Some(c) => match c
{ b'+' => parser.add_token(::Token::PLUS, 0.0).unwrap(),
b'-' => parser.add_token(::Token::MINUS, 0.0).unwrap(),
b'*' => parser.add_token(::Token::TIMES, 0.0).unwrap(),
b'/' => parser.add_token(::Token::DIVIDE, 0.0).unwrap(),
b'(' => parser.add_token(::Token::PAR_OPEN, 0.0).unwrap(),
b')' => parser.add_token(::Token::PAR_CLOSE, 0.0).unwrap(),
b';' => parser.add_token(::Token::SEMICOLON, 0.0).unwrap(),
b'0' ..= b'9' | b'.' =>
{ let pos = input.bytes().position(|c| !c.is_ascii_digit() && c!=b'.').unwrap_or(input.len());
let value = input[.. pos].parse().unwrap();
parser.add_token(::Token::NUM, value).unwrap();
input = &input[pos-1 ..];
}
_ => panic!("Invalid token")
}
None =>
{ return parser.end().unwrap().exprs;
}
}
input = &input[1 ..];
}
}

fn main()
{ use Expr::*;
let mut parser = Program::get_parser(());

assert_eq!
( parse(&mut parser, "2 + 2 * 2; (2+2) * 2"),
vec!
[ Plus
( Box::new(Num(2.0)),
Box::new(Times(Box::new(Num(2.0)), Box::new(Num(2.0))))
),
Times
( Box::new(Plus(Box::new(Num(2.0)), Box::new(Num(2.0)))),
Box::new(Num(2.0))
)
]
);
}
```

This allows to build syntax trees easily.