Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jesperdramsch/complex-cnn-seismic
Code accompanying the paper "Complex-valued neural networks for machine learning on non-stationary physical data".
https://github.com/jesperdramsch/complex-cnn-seismic
complex complex-numbers neural-network seismic
Last synced: about 2 months ago
JSON representation
Code accompanying the paper "Complex-valued neural networks for machine learning on non-stationary physical data".
- Host: GitHub
- URL: https://github.com/jesperdramsch/complex-cnn-seismic
- Owner: JesperDramsch
- License: apache-2.0
- Created: 2019-12-05T14:14:24.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-11-30T22:31:20.000Z (about 4 years ago)
- Last Synced: 2024-06-11T17:28:52.931Z (7 months ago)
- Topics: complex, complex-numbers, neural-network, seismic
- Language: Python
- Homepage: https://www.sciencedirect.com/science/article/pii/S0098300420306208
- Size: 3.74 MB
- Stars: 27
- Watchers: 6
- Forks: 11
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Complex-CNN-Seismic
This repository reproduces "Complex-valued neural networks for machine learning on non-stationary physical data".## Data
Obtained from https://github.com/olivesgatech/facies_classification_benchmark via
```
# download the files:
wget https://zenodo.org/record/3755060/files/data.zip
# check that the md5 checksum matches:
openssl dgst -md5 data.zip # Make sure the result looks like this: MD5(data.zip)= bc5932279831a95c0b244fd765376d85, otherwise the downloaded data.zip is corrupted.
```Preparation for training via `src/data_prep.py`.
## Training
Training done on GPU cluster using `src/mass_train.py`.## Prediction
Use trained models to generate predictions `src/save_predictions.py`.## Analysis
Numerical and qualitative analysis generated via `src/explore.py`.## Citation
Please cite the according paper as
```
@article{dramsch2020complex,
title={Complex-valued neural networks for machine learning on non-stationary physical data},
author={Dramsch, Jesper S{\"o}ren and L{\"u}thje, Mikael and Christensen, Anders Nymark},
journal={Computers \& Geosciences},
pages={104643},
year={2020},
publisher={Elsevier}
}
```