Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jhhuang96/ConvLSTM-PyTorch
ConvLSTM/ConvGRU (Encoder-Decoder) with PyTorch on Moving-MNIST
https://github.com/jhhuang96/ConvLSTM-PyTorch
convgru convlstm encoder-decoder gru lstm pytorch-implementation rnn spatio-temporal time-series
Last synced: 2 months ago
JSON representation
ConvLSTM/ConvGRU (Encoder-Decoder) with PyTorch on Moving-MNIST
- Host: GitHub
- URL: https://github.com/jhhuang96/ConvLSTM-PyTorch
- Owner: jhhuang96
- License: mit
- Created: 2019-08-13T08:10:37.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-10-13T02:04:37.000Z (about 2 years ago)
- Last Synced: 2024-08-01T19:45:46.864Z (5 months ago)
- Topics: convgru, convlstm, encoder-decoder, gru, lstm, pytorch-implementation, rnn, spatio-temporal, time-series
- Language: Python
- Homepage:
- Size: 9.33 MB
- Stars: 371
- Watchers: 8
- Forks: 83
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-cv - PyTorch Implementation of ConvLSTM Cell
- awesome-cv - PyTorch Implementation of ConvLSTM Cell
README
# ConvLSTM-Pytorch
## ConvRNN cell
Implement ConvLSTM/ConvGRU cell with Pytorch. This idea has been proposed in this paper: [Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting](https://arxiv.org/abs/1506.04214)
## Experiments with ConvLSTM on MovingMNIST
Encoder-decoder structure. Takes in a sequence of 10 movingMNIST fames and attempts to output the remaining frames.
## Instructions
Requires `Pytorch v1.1` or later (and GPUs)
Clone repository
```
git clone https://github.com/jhhuang96/ConvLSTM-PyTorch.git
```To run endoder-decoder network for prediction moving-mnist:
```python
python main.py
```## Moving Mnist Generator
The script ``data/mm.py`` is the script to generate customized Moving Mnist based on [MNIST](http://yann.lecun.com/exdb/mnist/).
```python
MovingMNIST(is_train=True,
root='data/',
n_frames_input=args.frames_input,
n_frames_output=args.frames_output,
num_objects=[3])
```- is_train: If True, use script to generate data. If False, directly use Moving Mnist data downloaded from http://www.cs.toronto.edu/~nitish/unsupervised_video/
- root: The path of MNIST data
- n_frames_input: Number of input frames (int)
- n_frames_output: Number of output frames (int)
- num_objects: Number of digits in a frame (List) . [3] means there are 3 digits in each frame## Result
![Result](https://github.com/jhhuang96/ConvLSTM-PyTorch/tree/master/images/movingmnist.png)
- The first line is the real data for the first 10 frames
- The second line is prediction of the model for the last 10 frames## Citation
```
@inproceedings{xingjian2015convolutional,
title={Convolutional LSTM network: A machine learning approach for precipitation nowcasting},
author={Xingjian, SHI and Chen, Zhourong and Wang, Hao and Yeung, Dit-Yan and Wong, Wai-Kin and Woo, Wang-chun},
booktitle={Advances in neural information processing systems},
pages={802--810},
year={2015}
}
@inproceedings{xingjian2017deep,
title={Deep learning for precipitation nowcasting: a benchmark and a new model},
author={Shi, Xingjian and Gao, Zhihan and Lausen, Leonard and Wang, Hao and Yeung, Dit-Yan and Wong, Wai-kin and Woo, Wang-chun},
booktitle={Advances in Neural Information Processing Systems},
year={2017}
}
```