An open API service indexing awesome lists of open source software.

https://github.com/jhj0517/stable-diffusion-webui-musepose

MusePose extension for stable-diffusion-webui
https://github.com/jhj0517/stable-diffusion-webui-musepose

ai gradio open-source python stable-diffusion stable-diffusion-webui-plugin

Last synced: 11 months ago
JSON representation

MusePose extension for stable-diffusion-webui

Awesome Lists containing this project

README

          

# MusePose SD WebUI Extension
[MusePose](https://github.com/TMElyralab/MusePose) extension for the [SD WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui).
![screenshot](https://github.com/jhj0517/stable-diffusion-webui-MusePose/assets/97279763/aa982503-50c2-4093-9319-38510d51160b)

## OverView
When running, this will download a **total of 9 models** (15GB total) to your `path_to_sd_webui\models\` directory if there are no models.
```
./models/
|-- MusePose
| |-- denoising_unet.pth
| |-- motion_module.pth
| |-- pose_guider.pth
| └── reference_unet.pth
|-- dwpose
| |-- dw-ll_ucoco_384.pth
| └── yolox_l_8x8_300e_coco.pth
|-- sd-image-variations-diffusers
| └── unet
| |-- config.json
| └── diffusion_pytorch_model.bin
|-- image_encoder
| |-- config.json
| └── pytorch_model.bin
└── sd-vae-ft-mse
|-- config.json
└── diffusion_pytorch_model.bin
```
You can also manually download the models in the links [here](https://github.com/TMElyralab/MusePose?tab=readme-ov-file#download-weights), if you want.

MusePose works through a two step process.

Step1 - Extract pose (skeleton) video from input dance video & input image.

These models will be used for this step:
- `yolox_l_8x8_300e_coco.pth`
- `dw-ll_ucoco_384.pth`

The extracted pose video output will be saved in `path_to_sd_webui\outputs\MusePose\aligned_pose`.

Step2 - Make the image move from the input image & the extracted pose video.

These models will be used for this step:
- `denoising_unet.pth`
- `motion_module.pth`
- `pose_guider.pth`
- `reference_unet.pth`
- `sd-image-variations-diffusers`
- `image_encoder`
- `sd-vae-ft-mse`

The output will be saved in
`path_to_sd_webui\outputs\MusePose\inference_musepose`

# How to Install & Use
- Download & unzip this [repository](https://github.com/jhj0517/stable-diffusion-webui-MusePose/zipball/master) to `path_to_sd_webui\extensions\`
- Input image & input dancing video and click "ALIGN POSE" button in **Pose Alignment** tab.

The output will be saved in `path_to_sd_webui\outputs\MusePose\pose_alignment`.
- Input image & input the extract pose video from step1 and click "GENERATE" button in **MusePose Inference** tab.

The output will be saved in `path_to_sd_webui\outputs\MusePose\musepose_inference`.

# Troubleshooting For Installation
If you encounter error during installation and the MusePose tab doesn't appear, it's because WebUI's venv prevents installing some dependencies.

To fix this, you need to manually activate the venv and install these packages.
1. Open the terminal in the WebUI and activate the venv
```
C:\YourPath\To_SD_WebUI>venv\Scripts\activate
```
Then it will display (venv) in front of the terminal like this.
```
(venv) C:\YourPath\To_SD_WebUI>
```
2. In this state, run
```
pip uninstall opencv-python-headless
pip uninstall opencv-python
pip uninstall opencv-contrib-python
pip install opencv-python
pip install opencv-contrib-python
```