Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jhorzek/lesstimate
Optimize your models with lasso, scad, mcp, and other penalty functions
https://github.com/jhorzek/lesstimate
lasso mcp optimization optimization-algorithms regularization scad
Last synced: 25 days ago
JSON representation
Optimize your models with lasso, scad, mcp, and other penalty functions
- Host: GitHub
- URL: https://github.com/jhorzek/lesstimate
- Owner: jhorzek
- License: gpl-3.0
- Created: 2023-04-11T06:50:25.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-01-11T16:23:16.000Z (12 months ago)
- Last Synced: 2024-01-12T01:22:35.324Z (12 months ago)
- Topics: lasso, mcp, optimization, optimization-algorithms, regularization, scad
- Language: C++
- Homepage: https://jhorzek.github.io/lesstimate/
- Size: 2.75 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: Readme.md
- License: LICENSE
Awesome Lists containing this project
README
# lesstimate
> A longer documentation of the library can be found at https://jhorzek.github.io/lesstimate/.
**lesstimate** (**l**esstimate **es**timates **s**parse es**timate**s) is a C++ header-only library that lets you combine statistical models such linear regression with state of the art penalty functions (e.g., lasso, elastic net, scad). With **lesstimate** you can add regularization and variable selection procedures to your existing modeling framework. It is currently used in [**lessSEM**](https://github.com/jhorzek/lessSEM) to regularize structural equation models.
## Features
- **Multiple penalty functions**: **lesstimate** lets you apply any of the following penalties: ridge, lasso, adaptive lasso, elastic net, cappedL1, lsp, scad, mcp. Furthermore, you can combine multiple penalties.
- **State of the art optimizers**: **lesstimate** provides two state of the art optimizers--variants of glmnet and ista.
- **Header-only**: **lesstimate** is designed as a header-only library. Include the headers and you are ready to go.
- **Builds on armadillo**: **lesstimate** builds on the popular *C++* [**armadillo**](https://arma.sourceforge.net/docs.html) library, providing you with access to a wide range of mathematical functions to create your model.
- **R and C++**: **lesstimate** can be used in both, [*R*](https://github.com/jhorzek/lesstimateTemplateR) and [*C++*](https://github.com/jhorzek/lesstimateTemplateCpp) libraries.## Details
**lesstimate** lets you optimize fitting functions of the form
$$g(\pmb\theta) = f(\pmb\theta) + p(\pmb\theta),$$
where $f(\pmb\theta)$ is a smooth objective function (e.g., residual sum squared, weighted least squares or log-Likelihood) and $p(\pmb\theta)$ is a non-smooth penalty function (e.g., lasso or scad).
To use the optimziers, you will need two functions:
1. a function that computes the fit value $f(\pmb\theta)$ of your model
2. a functions that computes the gradients $\triangledown_{\pmb\theta}f(\pmb\theta)$ of the modelGiven these two functions, **lesstimate** lets you apply any of the aforementioned penalties with the quasi-Newton glmnet optimizer developed by Friedman et al. (2010) and Yuan et al. (2012) or variants of the proximal-operator based ista optimizer (see e.g., Gong et al., 2013). Because both optimziers provide a very similar interface, sitching between them is fairly simple. This interface is inspired by the [**ensmallen**](https://ensmallen.org/) library.
A thorough introduction to **lesstimate** and its use in R or C++ can be found in the [documentation](https://jhorzek.github.io/lesstimate/).
We also provide a [template for using **lesstimate** in R](https://github.com/jhorzek/lesstimateTemplateR) and [template for using **lesstimate** in C++](https://github.com/jhorzek/lesstimateTemplateCpp). Finally, you will find another example for including **lesstimate** in R in the package [**lessLM**](https://github.com/jhorzek/lessLM). We recommend that you use the [simplified interfaces](https://github.com/jhorzek/lesstimate/blob/main/include/simplified_interfaces.h) to get started.## Example
The following code demonstrates the use of **lesstimate** with regularized linear regressions. A longer step-by-step introduction including installation of **lesstimate** is provided in the [documentation](https://jhorzek.github.io/lesstimate/). The cmake infrastructure was created with [cmake-init](https://github.com/friendlyanon/cmake-init).
```
#include
#include// The model must inherit from less::model and override the fit and (optionally) the gradients function.
class linearRegressionModel : public less::model
{
public:
double fit(arma::rowvec b, less::stringVector labels) override
{
// compute sum of squared errors
arma::mat sse = (arma::trans(y - X * b.t()) * (y - X * b.t())) / (2.0 * y.n_elem);
return (sse(0, 0));
}// linear regression requires dependent variables y and design matrix X:
const arma::colvec y;
const arma::mat X;// constructor
linearRegressionModel(arma::colvec y_, arma::mat X_) : y(y_), X(X_){};
};int main()
{
// examples for design matrix and dependent variable:
arma::mat X = {{1.00, -0.70, -0.86},
{1.00, -1.20, -2.10},
{1.00, -0.15, 1.13},
{1.00, -0.50, -1.50},
{1.00, 0.83, 0.44},
{1.00, -1.52, -0.72},
{1.00, 1.40, -1.30},
{1.00, -0.60, -0.59},
{1.00, -1.10, 2.00},
{1.00, -0.96, -0.20}};arma::colvec y = {{0.56},
{-0.32},
{0.01},
{-0.09},
{0.18},
{-0.11},
{0.62},
{0.72},
{0.52},
{0.12}};// initialize model
linearRegressionModel linReg(y, X);// To use the optimizers, you will need to
// (1) specify starting values and names for the parameters
arma::rowvec startingValues(3);
startingValues.fill(0.0);
std::vector labels{"b0", "b1", "b2"};
less::stringVector parameterLabels(labels);// (2) specify the penalty to be used for each of the parameters:
std::vector penalty{"none", "lasso", "lasso"};// (3) specify the tuning parameters of your penalty for
// each parameter:
arma::rowvec lambda = {{0.0, 0.2, 0.2}};
// theta is not used by the lasso penalty:
arma::rowvec theta = {{0.0, 0.0, 0.0}};less::fitResults fitResult_ = less::fitGlmnet(
linReg,
startingValues,
parameterLabels,
penalty,
lambda,
theta);
return(0);
}
```# References
## Penalty Functions
* Candès, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing Sparsity by
Reweighted l1 Minimization. Journal of Fourier Analysis and Applications, 14(5–6),
877–905. https://doi.org/10.1007/s00041-008-9045-x
* Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized
likelihood and its oracle properties. Journal of the American Statistical
Association, 96(456), 1348–1360. https://doi.org/10.1198/016214501753382273
* Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation
for Nonorthogonal Problems. Technometrics, 12(1), 55–67. https://doi.org/10.1080/00401706.1970.10488634
* Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.
* Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty.
The Annals of Statistics, 38(2), 894–942. https://doi.org/10.1214/09-AOS729
* Zhang, T. (2010). Analysis of Multi-stage Convex Relaxation for Sparse Regularization.
Journal of Machine Learning Research, 11, 1081–1107.
* Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American Statistical Association, 101(476), 1418–1429. https://doi.org/10.1198/016214506000000735
* Zou, H., & Hastie, T. (2005). Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B, 67(2), 301–320.
https://doi.org/10.1111/j.1467-9868.2005.00503.x## Optimizer
### GLMNET
* Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical
Software, 33(1), 1–20. https://doi.org/10.18637/jss.v033.i01
* Yuan, G.-X., Ho, C.-H., & Lin, C.-J. (2012). An improved GLMNET for
l1-regularized logistic regression. The Journal of Machine Learning Research,
13, 1999–2030. https://doi.org/10.1145/2020408.2020421### Variants of ISTA
* Beck, A., & Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1),
183–202. https://doi.org/10.1137/080716542
* Gong, P., Zhang, C., Lu, Z., Huang, J., & Ye, J. (2013). A general iterative
shrinkage and thresholding algorithm for non-convex regularized optimization problems.
Proceedings of the 30th International Conference on Machine Learning, 28(2)(2), 37–45.
* Parikh, N., & Boyd, S. (2013). Proximal Algorithms. Foundations and
Trends in Optimization, 1(3), 123–231.# License
This project is under GPL >= 2.
THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.