Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jiangpinglei/BERT_ChineseWordSegment
A Chinese word segment model based on BERT, F1-Score 97%
https://github.com/jiangpinglei/BERT_ChineseWordSegment
Last synced: 3 months ago
JSON representation
A Chinese word segment model based on BERT, F1-Score 97%
- Host: GitHub
- URL: https://github.com/jiangpinglei/BERT_ChineseWordSegment
- Owner: jiangpinglei
- License: apache-2.0
- Created: 2019-01-17T07:25:22.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-05-28T07:47:31.000Z (over 5 years ago)
- Last Synced: 2024-08-02T08:10:01.996Z (6 months ago)
- Language: Python
- Homepage:
- Size: 2.82 MB
- Stars: 91
- Watchers: 3
- Forks: 43
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-bert - jiangpinglei/BERT_ChineseWordSegment - Score 97%, (BERT NER task:)
README
# BERT_ChineseWordSegment
Try to implement a Chinese word segment work based on Google BERT!
The corpus is extracted from The People's Daily (Chinese: 人民日报, Renmin Ribao).
First git clone https://github.com/google-research/bert.gitSecond put the three scripts: modeling.py、optimization.py、tokenization.py into this project, structure is as follows:
BERT_ChinesewordSegment
|____ PEOPLEdata
|____ output
|____ modeling.py
|____ optimization.py
|____ tokenization.py
|____ run_cut.py
|____ evaluation.pyThird download the Chinese pre-trained bert model [BERT-Base, Chinese](https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip)
And then set pre-trained model path and data path environment: $BERT_CHINESE_DIR、$PEOPLEcut
## run
```
python3 run_cut.py --task_name="people" --do_train=True --do_predict=True --data_dir=$PEOPLEcut --vocab_file=$BERT_CHINESE_DIR/vocab.txt --bert_config_file=$BERT_CHINESE_DIR/bert_config.json --init_checkpoint=$BERT_CHINESE_DIR/bert_model.ckpt --max_seq_length=128 --train_batch_size=32 --learning_rate=2e-5 --num_train_epochs=3.0 --output_dir=./output/result_cut/
```It will take about 28 minutes with 3 epochs on a GPU.
This will produce an evaluate output like this:
```
INFO:tensorflow:***** Eval results *****
INFO:tensorflow: count = 9925
INFO:tensorflow: precision_avg = 0.9794
INFO:tensorflow: recall_avg = 0.9780
INFO:tensorflow: f1_avg = 0.9783
INFO:tensorflow: error_avg = 0.0213
```
And the word segmentation results will be seen in ./output/result_cut/seg_result.txtIf you want learn more details, see the code analysis(in Chinese)[简书:BERT系列(五)——中文分词实践...](https://www.jianshu.com/p/be0a951445f4)