Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jiaqima/G3NN
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)
https://github.com/jiaqima/G3NN
Last synced: 3 months ago
JSON representation
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)
- Host: GitHub
- URL: https://github.com/jiaqima/G3NN
- Owner: jiaqima
- License: mit
- Created: 2019-09-13T06:34:28.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2021-11-14T05:45:27.000Z (almost 3 years ago)
- Last Synced: 2024-06-29T10:32:19.118Z (5 months ago)
- Language: Python
- Homepage: https://arxiv.org/abs/1905.10769
- Size: 12.7 KB
- Stars: 16
- Watchers: 4
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# G3NN
This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper:
[A Flexible Generative Framework for Graph-based Semi-supervised Learning](https://arxiv.org/abs/1905.10769)
[Jiaqi Ma](https://www.jiaqima.com/)\*, [Weijing Tang](https://sites.google.com/umich.edu/weijingtang/home)\*, [Ji Zhu](http://dept.stat.lsa.umich.edu/~jizhu/), and [Qiaozhu Mei](http://www-personal.umich.edu/~qmei/). NeurIPS 2019.
(\*: equal contribution)
## Requirements
See `environment.yml`. Run `conda torch_env create -f environment.yml` to install the required packages.## Run the code
Example: `python main.py --model lsm_gcn --dataset cora`## Cite
```
@inproceedings{ma2019flexible,
title={A Flexible Generative Framework for Graph-based Semi-supervised Learning},
author={Ma, Jiaqi and Tang, Weijing and Zhu, Ji and Mei, Qiaozhu},
booktitle={Advances in Neural Information Processing Systems},
pages={3276--3285},
year={2019}
}
```