Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/jimhester/typecheck

The typeCheck package automatically adds type checking code when types are annotated.
https://github.com/jimhester/typecheck

Last synced: about 2 months ago
JSON representation

The typeCheck package automatically adds type checking code when types are annotated.

Awesome Lists containing this project

README

        

---
output: github_document
---

```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```

## Type Check ##
[![Travis-CI Build Status](https://travis-ci.org/jimhester/typeCheck.svg?branch=master)](https://travis-ci.org/jimhester/typeCheck)
[![Coverage Status](https://img.shields.io/codecov/c/github/jimhester/typeCheck/master.svg)](https://codecov.io/github/jimhester/typeCheck?branch=master)

Type check allows use of [types](https://github.com/jimhester/types) to
automatically add checking code when types are annotated.

### Defining Types ###

`type_define()` is used to define a new type. The `check` argument specifies
a function used to verify the objects type. `type_check` adds the checks to a
specific function.

```{r error = TRUE}
type.numeric <- type_define(check = is.numeric)

f <- type_check(function(x = ? numeric) x)
f(1)
f("txt")
```

Types are defined as methods of the `type` generic. This means they follow the
same properties as normal S3 methods and can be exported and imported
to and from packages like all other functions.

The `error` argument is used to specify a custom error message for a type.

```{r error = TRUE}
type.numeric <- type_define(
check = is.numeric,
error = function(obj_name, obj_value, type) {
sprintf("%s: '%s' is not a number!", obj_name, obj_value)
})
f <- type_check(function(x = ? numeric) x)
f("txt")
```

### Packages ###

When writing a package adding a call to `typeCheck::type_check_package()`
anywhere outside a function will add type checks to all functions in the
package. Functions without type annotations are unaltered.

This means it is easy to add annotations in a stepwise process to existing
packages.

If you are using [roxygen2](https://github.com/klutometis/roxygen) You can use
the following `importFrom` statement (or use the equivalent `importFrom()` call directly
in the `NAMESPACE` file.)

```{r eval = FALSE}
f <- function(x = ? numeric) x

#' @importFrom typeCheck type type_define
typeCheck::type_check_package()
```