An open API service indexing awesome lists of open source software.

https://github.com/jina-ai/jinaai-py


https://github.com/jina-ai/jinaai-py

Last synced: 5 months ago
JSON representation

Awesome Lists containing this project

README

        

# JinaAI Python SDK

The JinaAI Python SDK is an efficient instrument that smoothly brings the power of JinaAI's products — [SceneXplain](https://scenex.jina.ai), [PromptPerfect](https://promptperfect.jina.ai/), [Rationale](https://rationale.jina.ai/), [BestBanner](https://bestbanner.jina.ai/), and [JinaChat](https://chat.jina.ai/) — into Python applications. Acting as a sturdy interface for JinaAI's APIs, this SDK lets you effortlessly formulate and fine-tune prompts, thus streamlining application development.

## Installing

### Package manager

Using pip:
```bash
$ pip install jinaai
```

## API secrets

To generate an API secret, you need to authenticate on each respective platform's API tab:

- [SceneXplain API](https://scenex.jina.ai/api)
- [PromptPerfect API](https://promptperfect.jina.ai/api)
- [Rationale API](https://rationale.jina.ai/api)
- [JinaChat API](https://chat.jina.ai/api)
- [BestBanner API](https://bestbanner.jina.ai/api)

> **Note:** Each secret is product-specific and cannot be interchanged. If you're planning to use multiple products, you'll need to generate a separate secret for each.

## Example usage

Import the SDK and instantiate a new client with your authentication secrets:

```python
from jinaai import JinaAI

jinaai = JinaAI(
secrets = {
'promptperfect-secret': 'XXXXXX',
'scenex-secret': 'XXXXXX',
'rationale-secret': 'XXXXXX',
'jinachat-secret': 'XXXXXX',
'bestbanner-secret': 'XXXXXX',
}
)
```

Describe images:

```python
descriptions = jinaai.describe(
'https://picsum.photos/200'
)
```

Evaluate situations:

```python
decisions = jinaai.decide(
'Going to Paris this summer',
{ 'analysis': 'proscons' }
)
```

Optimize prompts:

```python
prompts = jinaai.optimize(
'Write an Hello World function in Python'
)
```

Generate complex answers:

```python
output = jinaai.generate(
'Give me a recipe for a pizza with pineapple'
)
```

Create images from text:

```python
output = jinaai.imagine(
'A controversial fusion of sweet pineapple and savory pizza.'
)
```

Use APIs together:

```python
situations = [toBase64(img) for img in [
'factory-1.png',
'factory-2.png',
'factory-3.png',
'factory-4.png',
]]

descriptions = jinaai.describe(situations)

prompt1 = [
'Do any of those situations present a danger?',
'Reply with [YES] or [NO] and explain why',
*['SITUATION:\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
]

analysis = jinaai.generate('\n'.join(prompt1))

prompt2 = [
'What should be done first to make those situations safer?',
'I only want the most urgent situation',
*['SITUATION:\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
]

recommendation = jinaai.generate('\n'.join(propmt2))

swot = jinaai.decide(
recommendation['output'],
{ 'analysis': 'swot' }
)

banners = jinaai.imagine(
*[desc['output'] for i, desc in enumerate(descriptions['results'])]
)
```

## Raw Output

You can retrieve the raw output of each APIs by passing `raw: True` in the options:

```python
descriptions = jinaai.describe(
'https://picsum.photos/200',
{ 'raw': True }
)

print(descriptions['raw'])
```

## Custom Base Urls

Custom base Urls can be passed directly in the client's constructor:

```python
jinaai = JinaAI(
baseUrls={
'promptperfect': 'https://promptperfect-customurl.jina.ai',
'scenex': 'https://scenex-customurl.jina.ai',
'rationale': 'https://rationale-customurl.jina.ai',
'jinachat': 'https://jinachat-customurl.jina.ai',
'bestbanner': 'https://bestbanner-customurl.jina.ai',
}
)
```

## API Documentation

### JinaAi.describe

```python
output = JinaAI.describe(input, options)
```

- Input

>| VARIABLE | TYPE | VALUE
>|---------------------------------------|-------------------|----------
>| input | str / str array | Image URL or Base64

- Options

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| options | dict |
>| options['algorithm'] | None / str | Aqua / Bolt / Comet / Dune / Ember / Flash / Glide / Hearth / Inception / Jelly
>| options['features'] | None / str array | high_quality, question_answer, tts, opt-out, json
>| options['languages'] | None / str array | en, cn, de, fr, it...
>| options['question'] | None / str | Question related to the picture(s)
>| options['style'] | None / str | default / concise / prompt
>| options['output_length'] | None / number |
>| options['json_schema'] | None / dict |
>| options['callback_url'] | None / string |

- Output

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| output | dict |
>| output['results'] | dict array |
>| results[0]['output'] | str | The picture description
>| results[0]['i18n'] | dict | Contains one key for each item in languages
>| ...i18n['cn'] | str | The translated picture description
>| ...i18n['cn'] | dict array | Only for Hearth algorithm
>| ...i18n['cn'][0] | dict |
>| ...i18n['cn'][0]['message'] | str |
>| ...i18n['cn'][0]['isNarrator'] | boolean |
>| ...i18n['cn'][0]['name'] | str |
>| ...i18n['cn'] | dict array | Only for Inception algorithm
>| ...i18n['cn'][0] | dict |
>| ...i18n['cn'][0]['summary'] | str |
>| ...i18n['cn'][0]['events'] | dict array |
>| ...['events']['description'] | str |
>| ...['events']['timestamp'] | str |
>| results[0]['tts'] | dict | Only for Hearth algorithm
>| ...tts['cn'] | str | Contains the url to the tts file
>| results[0]['ssml'] | dict | Only for Hearth algorithm
>| ...ssml['cn'] | str | Contains the url to the ssml file


### JinaAi.optimize

```python
output = JinaAI.optimize(input, options)
```

- Input

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| input | str / str array | Image URL or Base64 / prompt to optimize

- Options

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| options | dict |
>| options['targetModel'] | None / str | chatgpt / gpt-4 / stablelm-tuned-alpha-7b / claude / cogenerate / text-davinci-003 / dalle / sd / midjourney / kandinsky / lexica
>| options['features'] | None / str array | preview, no_spam, shorten, bypass_ethics, same_language, always_en, high_quality, redo_original_image, variable_subs, template_run
>| options['iterations'] | None / number | Default: 1
>| options['previewSettings'] | None / dict | Contains the settings for the preview
>| ...previewSettings['temperature'] | number | Example: 0.9
>| ...previewSettings['topP'] | number | Example: 0.9
>| ...previewSettings['topK'] | number | Example: 0
>| ...previewSettings['frequencyPenalty'] | number | Example: 0
>| ...previewSettings['presencePenalty'] | number | Example: 0
>| options['previewVariables'] | None / dict | Contains one key for each variables in the prompt
>| ...previewVariables['var1'] | str | The value of the variable
>| options['timeout'] | Number | Default: 20000
>| options['target_language'] | None / str | en / cn / de / fr / it...

- Output

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| output | dict |
>| output['results'] | dict array |
>| results[0]['output'] | str | The optimized prompt


### JinaAi.decide

```python
output = JinaAI.decide(input, options)
```

- Input

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| input | str / str array | Decision to evaluate

- Options

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| options | dict |
>| options['analysis'] | None / str | proscons / swot / multichoice / outcomes
>| options['style'] | None / str | concise / professional / humor / sarcastic / childish / genZ
>| options['profileId'] | None / str | The id of the Personas you want to use

- Output

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| output | dict |
>| output['results'] | dict array |
>| results[0]['proscons'] | None / dict |
>| ...proscons['pros'] | dict | Contains one key for each pros
>| ...proscons['pros']['pros1'] | str | The explanation of the pros
>| ...proscons['cons'] | dict | Contains one key for each cons
>| ...proscons['cons']['cons1'] | str | The explanation of the cons
>| ...proscons['bestChoice'] | str |
>| ...proscons['conclusion'] | str |
>| ...proscons['confidenceScore'] | number |
>| results[0]['swot'] | None / dict |
>| ...swot['strengths'] | dict | Contains one key for each strength
>| ...swot['strengths']['str1'] | str | The explanation of the strength
>| ...swot['weaknesses'] | dict | Contains one key for each weakness
>| ...swot['weaknesses']['weak1'] | str | The explanation of the weakness
>| ...swot['opportunities'] | dict | Contains one key for each opportunity
>| ...swot['opportunities']['opp1'] | str | The explanation of the opportunity
>| ...swot['threats'] | dict | Contains one key for each threat
>| ...swot['threats']['thre1'] | str | The explanation of the threat
>| ...swot['bestChoice'] | str |
>| ...swot['conclusion'] | str |
>| ...swot['confidenceScore'] | number |
>| results[0]['multichoice'] | None / dict | Contains one key for each choice
>| ...multichoice['choice1'] | str | The value of the choice
>| results[0]['outcomes'] | None / dict array |
>| ...outcomes[0]['children'] | None / dict array | a recursive array of results['outcomes']
>| ...outcomes[0]['label'] | str |
>| ...outcomes[0]['sentiment'] | str |


### JinaAi.generate

```python
output = JinaAI.generate(input, options)
```

- Input

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|------------------------|----------
>| input | str / str array | Image URL or Base64 / prompt

- Options

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|------------------------|----------
>| options | dict |
>| options['role'] | None / str | user / assistant
>| options['name'] | None / str | The name of the author of this message
>| options['chatId'] | None / str | The id of the conversation to continue
>| options['stream'] | None / boolean | Whether to stream back partial progress, Default: false
>| options['temperature'] | None / number | Default: 1
>| options['top_p'] | None / str | Default: 1
>| options['stop'] | None / str / str array | Up to 4 sequences where the API will stop generating further tokens
>| options['max_tokens'] | None / number | Default: infinite
>| options['presence_penalty'] | None / number | Number between -2.0 and 2.0, Default: 0
>| options['frequency_penalty'] | None / number | Number between -2.0 and 2.0, Default: 0
>| options['logit_bias'] | None / dict | The likelihood for a token to appear in the completion
>| ...logit_bias['tokenId'] | number | Bias value from -100 to 100
>| options['image'] | str | The attached image of the message. The image can be either a URL or a base64-encoded string

- Output

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| output | dict |
>| output['output'] | str | The generated answer
>| output['chatId'] | str | The chatId to continue the conversation


### JinaAi.imagine

```python
output = JinaAI.imagine(input, options)
```

- Input

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|------------------------|----------
>| input | str / str array | Prompt

- Options

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|------------------------|----------
>| options | dict |
>| options['style'] | None / str | default / photographic / minimalist / flat

- Output

>| VARIABLE | TYPE | VALUE
>|----------------------------------------|-------------------|----------
>| output | dict |
>| output['results'] | dict array |
>| results[0]['output'] | array | array of 4 image urls


### JinaAi.utils

```python
outout = JinaAI.utils.image_to_base64(input)
```

>| VARIABLE | TYPE | VALUE
>|---------------------------------------|-------------------|----------
>| input | str | Image path on disk
>| output | str | Base64 image

```python
outout = JinaAI.utils.is_url(input)
```

>| VARIABLE | TYPE | VALUE
>|---------------------------------------|-------------------|----------
>| input | str |
>| output | boolean |

```python
outout = JinaAI.utils.is_base64(input)
```

>| VARIABLE | TYPE | VALUE
>|---------------------------------------|-------------------|----------
>| input | str |
>| output | boolean |