https://github.com/jintao-huang/efficientdet_pytorch
EfficientDet_PyTorch 目标检测(Object Detection)
https://github.com/jintao-huang/efficientdet_pytorch
efficientdet object-detection pytorch
Last synced: 5 days ago
JSON representation
EfficientDet_PyTorch 目标检测(Object Detection)
- Host: GitHub
- URL: https://github.com/jintao-huang/efficientdet_pytorch
- Owner: Jintao-Huang
- License: apache-2.0
- Created: 2020-05-15T06:08:15.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2021-04-23T01:23:52.000Z (over 4 years ago)
- Last Synced: 2025-01-12T21:33:30.031Z (9 months ago)
- Topics: efficientdet, object-detection, pytorch
- Language: Python
- Homepage:
- Size: 8.47 MB
- Stars: 22
- Watchers: 1
- Forks: 1
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# EfficientDet_PyTorch
注意事项(NOTICE):
1. 训练请使用SGD优化器(with momentum 0.9). 不要使用Adam. 会造成不收敛.
Use SGD optimizer for training(with momentum 0.9). Do not use Adam. It will cause a nonconvergence2. 有两个分支(branch),一个是按照论文书写(official)、一个是参考`zylo117`的代码(master),
并使用了他的预训练模型书写(万分感谢),请按实际情况选择
There are two branches, one(official) was written according to the paper,
the other(master) was written referring to the code of 'Zylo117' and use his pre-training model(thank you very much),
please choose according to the actual situation
3. `train_example.py` 的意义是展示模型输入的格式
The meaning of `train_example.py` is to show the format of the model input4. 自己训练的时候,请使用`EfficientNet`预训练模型(推荐使用official)
Use 'EfficientNet' pre-training model when you train yourself
(Official is recommended)## Reference
1. 论文(paper):
[https://arxiv.org/pdf/1911.09070.pdf](https://arxiv.org/pdf/1911.09070.pdf)2. 代码参考(reference code):
[https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch](https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch)3. EfficientNet 主干网代码来源(Backbone code source):
[https://github.com/Jintao-Huang/EfficientNet_PyTorch](https://github.com/Jintao-Huang/EfficientNet_PyTorch)4. 预训练模型来自(The pre-training model comes from):
[https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch](https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch)
因为修改了模型,所以我把预训练模型的state_dict进行了重组,并进行发布
(Because I changed the model, I reorganized the state_dict for the pretraining model and release it)5. VOC0712 数据集链接
链接:[https://pan.baidu.com/s/17iop7UBnSGExW64cip-pYw](https://pan.baidu.com/s/17iop7UBnSGExW64cip-pYw)
提取码:sdvx权重见 release. 或在百度云中下载:
链接:[https://pan.baidu.com/s/1VrO0eBmSHlB8_haEJ7WbuA](https://pan.baidu.com/s/1VrO0eBmSHlB8_haEJ7WbuA)
提取码:2kq9## 使用方式(How to use)
#### 1. 预测图片(Predict images)
```
python3 pred_image.py
```#### 2. 预测视频(Predict video)
```
python3 pred_video.py
```#### 3. 简单的训练案例(Simple training cases)
```
python3 train_example.py
```#### 4. 训练
```
python3 make_dataset.py
python3 train.py
```## 性能
如果打不开可在`images/`与`docs/`文件夹中查看
#### d0效果


## 运行环境(environment)
torch 1.7.1
torchvision 0.8.2