https://github.com/jinzhuoran/paper-template
https://github.com/jinzhuoran/paper-template
Last synced: 4 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/jinzhuoran/paper-template
- Owner: jinzhuoran
- License: apache-2.0
- Created: 2021-05-10T11:56:20.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2021-05-10T11:56:21.000Z (about 4 years ago)
- Last Synced: 2025-01-04T22:44:50.687Z (5 months ago)
- Language: Python
- Size: 6.84 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
### Deep learning project seed
Use this seed to start new deep learning / ML projects.- Built in setup.py
- Built in requirements
- Examples with MNIST
- Badges
- Bibtex#### Goals
The goal of this seed is to structure ML paper-code the same so that work can easily be extended and replicated.### DELETE EVERYTHING ABOVE FOR YOUR PROJECT
---
# Your Project Name[](https://www.nature.com/articles/nature14539)
[](https://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018)
[](https://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018)
[](https://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018)
## Description
What it does## How to run
First, install dependencies
```bash
# clone project
git clone https://github.com/YourGithubName/deep-learning-project-template# install project
cd deep-learning-project-template
pip install -e .
pip install -r requirements.txt
```
Next, navigate to any file and run it.
```bash
# module folder
cd project# run module (example: mnist as your main contribution)
python lit_classifier_main.py
```## Imports
This project is setup as a package which means you can now easily import any file into any other file like so:
```python
from project.datasets.mnist import mnist
from project.lit_classifier_main import LitClassifier
from pytorch_lightning import Trainer# model
model = LitClassifier()# data
train, val, test = mnist()# train
trainer = Trainer()
trainer.fit(model, train, val)# test using the best model!
trainer.test(test_dataloaders=test)
```### Citation
```
@article{YourName,
title={Your Title},
author={Your team},
journal={Location},
year={Year}
}
```