An open API service indexing awesome lists of open source software.

https://github.com/jinzhuoran/paper-template


https://github.com/jinzhuoran/paper-template

Last synced: 4 months ago
JSON representation

Awesome Lists containing this project

README

        

### Deep learning project seed
Use this seed to start new deep learning / ML projects.

- Built in setup.py
- Built in requirements
- Examples with MNIST
- Badges
- Bibtex

#### Goals
The goal of this seed is to structure ML paper-code the same so that work can easily be extended and replicated.

### DELETE EVERYTHING ABOVE FOR YOUR PROJECT

---



# Your Project Name

[![Paper](http://img.shields.io/badge/paper-arxiv.1001.2234-B31B1B.svg)](https://www.nature.com/articles/nature14539)
[![Conference](http://img.shields.io/badge/NeurIPS-2019-4b44ce.svg)](https://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018)
[![Conference](http://img.shields.io/badge/ICLR-2019-4b44ce.svg)](https://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018)
[![Conference](http://img.shields.io/badge/AnyConference-year-4b44ce.svg)](https://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018)

![CI testing](https://github.com/PyTorchLightning/deep-learning-project-template/workflows/CI%20testing/badge.svg?branch=master&event=push)




## Description
What it does

## How to run
First, install dependencies
```bash
# clone project
git clone https://github.com/YourGithubName/deep-learning-project-template

# install project
cd deep-learning-project-template
pip install -e .
pip install -r requirements.txt
```
Next, navigate to any file and run it.
```bash
# module folder
cd project

# run module (example: mnist as your main contribution)
python lit_classifier_main.py
```

## Imports
This project is setup as a package which means you can now easily import any file into any other file like so:
```python
from project.datasets.mnist import mnist
from project.lit_classifier_main import LitClassifier
from pytorch_lightning import Trainer

# model
model = LitClassifier()

# data
train, val, test = mnist()

# train
trainer = Trainer()
trainer.fit(model, train, val)

# test using the best model!
trainer.test(test_dataloaders=test)
```

### Citation
```
@article{YourName,
title={Your Title},
author={Your team},
journal={Location},
year={Year}
}
```