An open API service indexing awesome lists of open source software.

https://github.com/jishengpeng/WavTokenizer

[ICLR 2025] SOTA discrete acoustic codec models with 40/75 tokens per second for audio language modeling
https://github.com/jishengpeng/WavTokenizer

acoustic audio-representation codec dac encodec gpt4o music-representation-learning semantic soundstream speech-language-model speech-representation text-to-speech

Last synced: 6 months ago
JSON representation

[ICLR 2025] SOTA discrete acoustic codec models with 40/75 tokens per second for audio language modeling

Awesome Lists containing this project

README

          

# WavTokenizer
SOTA Discrete Codec Models With Forty Tokens Per Second for Audio Language Modeling

[![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2408.16532)
[![demo](https://img.shields.io/badge/WanTokenizer-Demo-red)](https://wavtokenizer.github.io/)
[![model](https://img.shields.io/badge/%F0%9F%A4%97%20WavTokenizer-Models-blue)](https://huggingface.co/novateur/WavTokenizer)

### 🎉🎉 with WavTokenizer, you can represent speech, music, and audio with only 40 tokens per second!
### 🎉🎉 with WavTokenizer, You can get strong reconstruction results.
### 🎉🎉 WavTokenizer owns rich semantic information and is build for audio language models such as GPT-4o.

# 🔥 News
- *2025.02.25*: We update WavTokenizer camera ready version for ICLR 2025 and update WavTokenizer-large-v2 checkpoint on [huggingface](https://huggingface.co/novateur/WavTokenizer-large-speech-75token).
- *2024.10.22*: We update WavTokenizer on arxiv and release WavTokenizer-Large checkpoint.
- *2024.09.09*: We release WavTokenizer-medium checkpoint on [huggingface](https://huggingface.co/collections/novateur/wavtokenizer-medium-large-66de94b6fd7d68a2933e4fc0).
- *2024.08.31*: We release WavTokenizer on arxiv.

![result](result.png)

## Installation

To use WavTokenizer, install it using:

```bash
conda create -n wavtokenizer python=3.9
conda activate wavtokenizer
pip install -r requirements.txt
```

## Infer

### Part1: Reconstruct audio from raw wav

```python

from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer

device=torch.device('cpu')

config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"
audio_outpath = "xxx"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)

wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1)
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
features,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)
torchaudio.save(audio_outpath, audio_out, sample_rate=24000, encoding='PCM_S', bits_per_sample=16)
```

### Part2: Generating discrete codecs
```python

from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer

device=torch.device('cpu')

config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)

wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1)
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
_,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
print(discrete_code)
```

### Part3: Audio reconstruction through codecs
```python
# audio_tokens [n_q,1,t]/[n_q,t]
features = wavtokenizer.codes_to_features(audio_tokens)
bandwidth_id = torch.tensor([0])
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)
```

## Available models
🤗 links to the Huggingface model hub.

| Model name | HuggingFace | Corpus | Token/s | Domain | Open-Source |
|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:---------:|:----------:|:------:|
| WavTokenizer-small-600-24k-4096 | [🤗](https://huggingface.co/novateur/WavTokenizer/blob/main/WavTokenizer_small_600_24k_4096.ckpt) | LibriTTS | 40 | Speech | √ |
| WavTokenizer-small-320-24k-4096 | [🤗](https://huggingface.co/novateur/WavTokenizer/blob/main/WavTokenizer_small_320_24k_4096.ckpt) | LibriTTS | 75 | Speech | √|
| WavTokenizer-medium-320-24k-4096 | [🤗](https://huggingface.co/collections/novateur/wavtokenizer-medium-large-66de94b6fd7d68a2933e4fc0) | 10000 Hours | 75 | Speech, Audio, Music | √ |
| WavTokenizer-large-600-24k-4096 | [🤗](https://huggingface.co/novateur/WavTokenizer-large-unify-40token) | 80000 Hours | 40 | Speech, Audio, Music | √|
| WavTokenizer-large-320-24k-4096 | [🤗](https://huggingface.co/novateur/WavTokenizer-large-speech-75token) | 80000 Hours | 75 | Speech, Audio, Music | √ |

## Training

### Step1: Prepare train dataset
```python
# Process the data into a form similar to ./data/demo.txt
```

### Step2: Modifying configuration files
```python
# ./configs/xxx.yaml
# Modify the values of parameters such as batch_size, filelist_path, save_dir, device
```

### Step3: Start training process
Refer to [Pytorch Lightning documentation](https://lightning.ai/docs/pytorch/stable/) for details about customizing the
training pipeline.

```bash
cd ./WavTokenizer
python train.py fit --config ./configs/xxx.yaml
```

## Citation

If this code contributes to your research, please cite our work, Language-Codec and WavTokenizer:

```
@article{ji2024wavtokenizer,
title={Wavtokenizer: an efficient acoustic discrete codec tokenizer for audio language modeling},
author={Ji, Shengpeng and Jiang, Ziyue and Wang, Wen and Chen, Yifu and Fang, Minghui and Zuo, Jialong and Yang, Qian and Cheng, Xize and Wang, Zehan and Li, Ruiqi and others},
journal={arXiv preprint arXiv:2408.16532},
year={2024}
}

@article{ji2024language,
title={Language-codec: Reducing the gaps between discrete codec representation and speech language models},
author={Ji, Shengpeng and Fang, Minghui and Jiang, Ziyue and Huang, Rongjie and Zuo, Jialung and Wang, Shulei and Zhao, Zhou},
journal={arXiv preprint arXiv:2402.12208},
year={2024}
}
```