https://github.com/jiteshshelke/codsoft
Hello world, this is my profile
https://github.com/jiteshshelke/codsoft
Last synced: 26 days ago
JSON representation
Hello world, this is my profile
- Host: GitHub
- URL: https://github.com/jiteshshelke/codsoft
- Owner: JiteshShelke
- Created: 2024-01-06T13:57:26.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2025-03-30T18:02:58.000Z (about 1 month ago)
- Last Synced: 2025-03-30T18:31:08.108Z (about 1 month ago)
- Language: Jupyter Notebook
- Size: 973 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# π CodSoft Data Science Projects π§βπ»
## β¨ Author: Jitesh Santosh Shelke
**π Batch:** JAN BATCH A26
**π Domain:** Data ScienceThis repository contains three exciting machine learning projects completed as part of CodSoft's Data Science Internship. Each project leverages real-world datasets and showcases various ML techniques. π
---
## π **TASK-1: Titanic Survival Prediction**
### π― **Objective**
Predict whether a passenger survived the Titanic disaster using machine learning models. π³οΈβ### π **Dataset** ([Download Here](https://www.kaggle.com/c/titanic/data))
- `PassengerId`, `Survived`, `Pclass`, `Name`, `Sex`, `Age`, `SibSp`, `Parch`, `Ticket`, `Fare`, `Cabin`, `Embarked`### π **Technologies Used**
- π¦ **Libraries:** NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn
- π€ **Model:** Logistic Regression
- π **Evaluation Metrics:** Accuracy Score, Confusion Matrix, Classification Report### π **Implementation**
β Data Loading and Preprocessing
β Exploratory Data Analysis (EDA)
β Model Training and Evaluation---
## π¬ **TASK-2: Movie Rating Prediction**
### π― **Objective**
Predict movie ratings based on features such as genre, director, and actors. πΏπ₯### π **Dataset** ([Download Here](https://www.kaggle.com/datasets/adrianmcmahon/imdb-india-movies))
- `Name`, `Year`, `Duration`, `Genre`, `Rating`, `Votes`, `Director`, `Actor 1`, `Actor 2`, `Actor 3`### π **Technologies Used**
- π¦ **Libraries:** Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn
- π€ **Models:** Linear Regression, Ridge Regression, Random Forest Regressor, Decision Tree Regressor
- π **Evaluation Metrics:** Mean Squared Error, Mean Absolute Error, R-squared Score### π **Implementation**
β Data Preprocessing and Cleaning
β Feature Engineering
β Model Training and Hyperparameter Tuning
β Model Evaluation---
## πΊ **TASK-3: Iris Flower Classification**
### π― **Objective**
Classify Iris flowers into their respective species using machine learning models. πΏπΈ### π **Dataset** ([Download Here](https://www.kaggle.com/uciml/iris))
- `sepal_length`, `sepal_width`, `petal_length`, `petal_width`, `species`### π **Technologies Used**
- π¦ **Libraries:** NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn
- π€ **Models:** K-Means Clustering, Gaussian NaΓ―ve Bayes
- π **Evaluation Metrics:** Accuracy Score, Confusion Matrix, Classification Report### π **Implementation**
β Data Visualization and Preprocessing
β Model Training and Classification
β Model Evaluation and Performance Analysis---
## π» **Installation and Usage**
1οΈβ£ Clone the repository:
```bash
git clone https://github.com/yourusername/codsoft-datascience.git
```
2οΈβ£ Navigate to the project directory:
```bash
cd codsoft-datascience
```
3οΈβ£ Install required dependencies:
```bash
pip install -r requirements.txt
```
4οΈβ£ Run the Jupyter Notebook or Python scripts for each task.---
## π€ **Contact**
For any queries or collaborations, feel free to connect with me:
- π **GitHub:** (https://github.com/JiteshShelke/Jtxmaster)
- πΌ **LinkedIn:** (https://www.linkedin.com/in/jitesh-shelke-702745286/)---
**π Made with β€οΈ by Jitesh Santosh Shelke π―**