An open API service indexing awesome lists of open source software.

https://github.com/jiteshshelke/codsoft

Hello world, this is my profile
https://github.com/jiteshshelke/codsoft

Last synced: 26 days ago
JSON representation

Hello world, this is my profile

Awesome Lists containing this project

README

        

# πŸš€ CodSoft Data Science Projects πŸ§‘β€πŸ’»

## ✨ Author: Jitesh Santosh Shelke
**πŸ“Œ Batch:** JAN BATCH A26
**πŸ“Œ Domain:** Data Science

This repository contains three exciting machine learning projects completed as part of CodSoft's Data Science Internship. Each project leverages real-world datasets and showcases various ML techniques. 🌟

---

## πŸ† **TASK-1: Titanic Survival Prediction**

### 🎯 **Objective**
Predict whether a passenger survived the Titanic disaster using machine learning models. πŸ›³οΈβš“

### πŸ“‚ **Dataset** ([Download Here](https://www.kaggle.com/c/titanic/data))
- `PassengerId`, `Survived`, `Pclass`, `Name`, `Sex`, `Age`, `SibSp`, `Parch`, `Ticket`, `Fare`, `Cabin`, `Embarked`

### πŸ›  **Technologies Used**
- πŸ“¦ **Libraries:** NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn
- πŸ€– **Model:** Logistic Regression
- πŸ“Š **Evaluation Metrics:** Accuracy Score, Confusion Matrix, Classification Report

### πŸ“Œ **Implementation**
βœ… Data Loading and Preprocessing
βœ… Exploratory Data Analysis (EDA)
βœ… Model Training and Evaluation

---

## 🎬 **TASK-2: Movie Rating Prediction**

### 🎯 **Objective**
Predict movie ratings based on features such as genre, director, and actors. 🍿πŸŽ₯

### πŸ“‚ **Dataset** ([Download Here](https://www.kaggle.com/datasets/adrianmcmahon/imdb-india-movies))
- `Name`, `Year`, `Duration`, `Genre`, `Rating`, `Votes`, `Director`, `Actor 1`, `Actor 2`, `Actor 3`

### πŸ›  **Technologies Used**
- πŸ“¦ **Libraries:** Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn
- πŸ€– **Models:** Linear Regression, Ridge Regression, Random Forest Regressor, Decision Tree Regressor
- πŸ“Š **Evaluation Metrics:** Mean Squared Error, Mean Absolute Error, R-squared Score

### πŸ“Œ **Implementation**
βœ… Data Preprocessing and Cleaning
βœ… Feature Engineering
βœ… Model Training and Hyperparameter Tuning
βœ… Model Evaluation

---

## 🌺 **TASK-3: Iris Flower Classification**

### 🎯 **Objective**
Classify Iris flowers into their respective species using machine learning models. 🌿🌸

### πŸ“‚ **Dataset** ([Download Here](https://www.kaggle.com/uciml/iris))
- `sepal_length`, `sepal_width`, `petal_length`, `petal_width`, `species`

### πŸ›  **Technologies Used**
- πŸ“¦ **Libraries:** NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn
- πŸ€– **Models:** K-Means Clustering, Gaussian NaΓ―ve Bayes
- πŸ“Š **Evaluation Metrics:** Accuracy Score, Confusion Matrix, Classification Report

### πŸ“Œ **Implementation**
βœ… Data Visualization and Preprocessing
βœ… Model Training and Classification
βœ… Model Evaluation and Performance Analysis

---

## πŸ’» **Installation and Usage**
1️⃣ Clone the repository:
```bash
git clone https://github.com/yourusername/codsoft-datascience.git
```
2️⃣ Navigate to the project directory:
```bash
cd codsoft-datascience
```
3️⃣ Install required dependencies:
```bash
pip install -r requirements.txt
```
4️⃣ Run the Jupyter Notebook or Python scripts for each task.

---

## 🀝 **Contact**
For any queries or collaborations, feel free to connect with me:
- πŸ† **GitHub:** (https://github.com/JiteshShelke/Jtxmaster)
- πŸ’Ό **LinkedIn:** (https://www.linkedin.com/in/jitesh-shelke-702745286/)

---

**πŸš€ Made with ❀️ by Jitesh Santosh Shelke 🎯**