Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/jizhu1023/DMAN_MOT

Code for Online Multi-Object Tracking with Dual Matching Attention Network, ECCV 2018
https://github.com/jizhu1023/DMAN_MOT

dman dual-matching-attention-network mot multi-object-tracker multi-object-tracking multi-pedestrian-tracking multi-person-tracking object-tracking online-mot

Last synced: 29 days ago
JSON representation

Code for Online Multi-Object Tracking with Dual Matching Attention Network, ECCV 2018

Awesome Lists containing this project

README

        

# Online Multi-Object Tracking with DMANs

This is the implementation of our ECCV 2018 paper [Online Multi-Object Tracking with Dual Matching Attention Networks](https://arxiv.org/abs/1902.00749). We integrate the ECO [1] for single object tracking. The code framework for MOT benefits from the MDP [2].




# Prerequisites
- Cuda 8.0
- Cudnn 5.1
- Python 2.7
- Keras 2.0.5
- Tensorflow 1.1.0

For example:

conda create -n mot anaconda python=2.7

conda activate mot
conda install -c menpo opencv
pip install tensorflow-gpu==1.1.0
pip install keras==2.0.5

# Usage
1. Download the [DMAN model](https://zhiyanapp-build-release.oss-cn-shanghai.aliyuncs.com/zhuji_file/spatial_temporal_attention_model.h5) and put it into the "model/" folder.
2. Download the [MOT16 dataset](https://motchallenge.net/data/MOT16/), unzip it to the "data/" folder.
3. Cd to the "ECO/" folder, run the script install.m to compile libs for the ECO tracker
4. Run the socket server script:

python calculate_similarity.py


5. Run the socket client script DMAN_demo.m in Matlab.
# Citation

If you use this code, please consider citing:

@inproceedings{zhu-eccv18-DMAN,

author = {Zhu, Ji and Yang, Hua and Liu, Nian and Kim, Minyoung and Zhang, Wenjun and Yang, Ming-Hsuan},
title = {Online Multi-Object Tracking with Dual Matching Attention Networks},
booktitle = {European Computer Vision Conference},
year = {2018},
}

# References
[1] Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: Efficient convolution operators for tracking. In: CVPR (2017)

[2] Xiang, Y., Alahi, A., Savarese, S.: Learning to track: Online multi-object tracking by decision making. In: ICCV (2015)