Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jizhu1023/DMAN_MOT
Code for Online Multi-Object Tracking with Dual Matching Attention Network, ECCV 2018
https://github.com/jizhu1023/DMAN_MOT
dman dual-matching-attention-network mot multi-object-tracker multi-object-tracking multi-pedestrian-tracking multi-person-tracking object-tracking online-mot
Last synced: 29 days ago
JSON representation
Code for Online Multi-Object Tracking with Dual Matching Attention Network, ECCV 2018
- Host: GitHub
- URL: https://github.com/jizhu1023/DMAN_MOT
- Owner: jizhu1023
- License: gpl-3.0
- Created: 2019-04-13T15:49:37.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-07-10T15:54:01.000Z (over 5 years ago)
- Last Synced: 2024-08-03T22:14:15.250Z (4 months ago)
- Topics: dman, dual-matching-attention-network, mot, multi-object-tracker, multi-object-tracking, multi-pedestrian-tracking, multi-person-tracking, object-tracking, online-mot
- Language: MATLAB
- Homepage: https://jizhu1023.github.io/eccv18_mot/index.html
- Size: 18.6 MB
- Stars: 84
- Watchers: 2
- Forks: 15
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-multiple-object-tracking - [code - Object_Tracking_ECCV_2018_paper.pdf) (算法论文 / **2018**)
README
# Online Multi-Object Tracking with DMANs
This is the implementation of our ECCV 2018 paper [Online Multi-Object Tracking with Dual Matching Attention Networks](https://arxiv.org/abs/1902.00749). We integrate the ECO [1] for single object tracking. The code framework for MOT benefits from the MDP [2].
# Prerequisites
- Cuda 8.0
- Cudnn 5.1
- Python 2.7
- Keras 2.0.5
- Tensorflow 1.1.0For example:
conda create -n mot anaconda python=2.7
conda activate mot
conda install -c menpo opencv
pip install tensorflow-gpu==1.1.0
pip install keras==2.0.5# Usage
1. Download the [DMAN model](https://zhiyanapp-build-release.oss-cn-shanghai.aliyuncs.com/zhuji_file/spatial_temporal_attention_model.h5) and put it into the "model/" folder.
2. Download the [MOT16 dataset](https://motchallenge.net/data/MOT16/), unzip it to the "data/" folder.
3. Cd to the "ECO/" folder, run the script install.m to compile libs for the ECO tracker
4. Run the socket server script:python calculate_similarity.py
5. Run the socket client script DMAN_demo.m in Matlab.
# CitationIf you use this code, please consider citing:
@inproceedings{zhu-eccv18-DMAN,
author = {Zhu, Ji and Yang, Hua and Liu, Nian and Kim, Minyoung and Zhang, Wenjun and Yang, Ming-Hsuan},
title = {Online Multi-Object Tracking with Dual Matching Attention Networks},
booktitle = {European Computer Vision Conference},
year = {2018},
}# References
[1] Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: Efficient convolution operators for tracking. In: CVPR (2017)[2] Xiang, Y., Alahi, A., Savarese, S.: Learning to track: Online multi-object tracking by decision making. In: ICCV (2015)