Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/jmcheon/data_science


https://github.com/jmcheon/data_science

multilayer-perceptron neuralnetwork-creation python3 pytorch tensorflow

Last synced: about 2 months ago
JSON representation

Awesome Lists containing this project

README

        

# Data Science

## Circular Data
### Hyperparameters
```
lr = 1e-3
batch_size = None
epochs = 30
optimizer = optimizers.SGD(learning_rate=lr)
loss = BCELoss()
metrics = ['accuracy']
validation_data = (x_val, y_val)
```

### 1-layer Multilayer Perceptron

```
Model(
Dense((2, 1), activation=Sigmoid)
)
```
#### Training


Learning Curves



#### Evaluation


Metric
Train
Validation
Test


Accuracy
0.5527
0.54
0.5625


### 2-layer Multilayer Perceptron

```
Model(
Dense((2, 2), activation=ReLU)
Dense((2, 1), activation=Sigmoid)
)
```

#### Training


Learning Curves



#### Evaluation


Metric
Train
Validation
Test


Accuracy
0.7847
0.825
0.7375


### 3-layer Multilayer Perceptron

```
Model(
Dense((2, 4), activation=ReLU)
Dense((4, 3), activation=ReLU)
Dense((3, 1), activation=Sigmoid)
)
```

#### Training


Learning Curves



#### Evaluation


Metric
Train
Validation
Test


Accuracy
0.8916
0.89
0.8


### 4-layer Multilayer Perceptron

```
Model(
Dense((2, 10), activation=ReLU)
Dense((10, 8), activation=ReLU)
Dense((8, 5), activation=ReLU)
Dense((5, 1), activation=Sigmoid)
)
```

#### Training


Learning Curves



#### Evaluation


Metric
Train
Validation
Test


Accuracy
0.9986
1.0
1.0