https://github.com/jmp75/silverpieces
Prototype package for multidimensional processing of xarray
https://github.com/jmp75/silverpieces
datacube geostatistics spatio-temporal-analysis xarray
Last synced: 3 months ago
JSON representation
Prototype package for multidimensional processing of xarray
- Host: GitHub
- URL: https://github.com/jmp75/silverpieces
- Owner: jmp75
- License: other
- Created: 2019-07-16T06:28:16.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2021-07-21T02:27:18.000Z (about 4 years ago)
- Last Synced: 2025-06-04T07:46:55.700Z (4 months ago)
- Topics: datacube, geostatistics, spatio-temporal-analysis, xarray
- Language: Jupyter Notebook
- Homepage:
- Size: 3.75 MB
- Stars: 2
- Watchers: 5
- Forks: 3
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
README
# Silverpieces

Silverpieces is the codename for a general purpose library for processing N-dimensional arrays of data. The primary use case as of 2019-07 is to extract statistical information from multivariate spatial-temporal grids (lat/lon/time), building on top of `xarray`. Silverpieces subscribes to the goals of the [Pangeo](http://pangeo.io) community.
## License
MIT-derived (see [License.txt](./LICENSE.txt))
## Installation
*DRAFT*
In line with the stated intent of major Python scientific libraries, Silverpieces will only aim to run on Python 3.
Set up using conda, orIf using pip:
```sh
pip install -r requirements.txt
python setup.py install
```If using manual method:
```sh
Pull latest version from the repository:
https://github.com/jmp75/silverpieces.gitin \silverpieces, run:
>conda env create -f=./environment.ymlActivate the environment:
>conda activate sv
(where is ‘sv’ is the name configured in ‘environment.yml’)Then create the wheel:
python setup.py sdist bdist_wheelThe change to the ‘dist’ directory, where the file ‘silverpieces-0.2.0-py2.py3-none-any.whl’ should now be ready:
>pip install silverpieces-0.2.0-py2.py3-none-any.whlDrop back to ‘silverpieces’ and run:
>jupyter-labextension install @jupyter-widgets/jupyterlab-managerAn error will occur if ‘Node.js’ is not installed.
If so, run:
>conda install -c conda-forge nodejs
(see ‘https://anaconda.org/conda-forge/nodejs’)Install the manager:
>jupyter-labextension install @jupyter-widgets/jupyterlab-managerInstall the kernel:
>python -m ipykernel install --user --name sv --display-name "Py3 Silverpieces"And to run notebooks:
>jupyter lab```
## Documentation### Example
[Notebooks](./notebooks) provide some examples of usage. You can use:
* Docker, running `docker-compose up` will create a docker container running on jupyter port 8199 containing the examples.
* or manually set up a conda environment in [the notebook readme](./notebooks/Readme.md)## Related work
Silverpieces started to cater for operations on data cubes that go beyond `xarray` current built-in options. Possibly related work includes:
* [Data Cube Statistics](https://github.com/opendatacube/datacube-stats)
* [Climate Change Initiative (CCI) toolbox](https://cci-tools.github.io/)
* [Earth System Data Cube](https://cablab.readthedocs.io/en/latest/)
* [MetPy](https://unidata.github.io/MetPy/latest/index.html)