https://github.com/jmsull/ml_fnl_forecast
Public code for the forecasts computed in arXiv 2303.08901
https://github.com/jmsull/ml_fnl_forecast
Last synced: about 2 months ago
JSON representation
Public code for the forecasts computed in arXiv 2303.08901
- Host: GitHub
- URL: https://github.com/jmsull/ml_fnl_forecast
- Owner: jmsull
- License: mit
- Created: 2023-03-02T02:17:01.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2023-03-28T11:43:52.000Z (about 2 years ago)
- Last Synced: 2025-02-07T09:43:40.724Z (3 months ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 573 KB
- Stars: 3
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ml_fnl_forecast
Public code for the forecasts computed in [arXiv:2303.08901](https://arxiv.org/abs/2303.08901)## To use:
- Install Git and python 3.
- Clone this repository
$ git clone [email protected]:jmsull/ml_fnl_forecast.git
- Make a virtual environment (optional, recommended). For this step install conda
$ conda create -n envname python=x.x anaconda
$ conda activate envname
- Download dependencies
$ conda install --yes --file requirements.txt
- Download snapshot from IllustrisTNG and copy it inside TNG-300/
- Download supplementary halo structure catalog and copy it inside supplementary_catalog/
- To get galaxy samples
$ python3 b_phi_predictions/sample_selection/main.py