Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jni/numpy-skimage-tutorial
A quick tutorial of NumPy and scikit-image for the COMBINE Python workshop, 2014-11-27
https://github.com/jni/numpy-skimage-tutorial
Last synced: 12 days ago
JSON representation
A quick tutorial of NumPy and scikit-image for the COMBINE Python workshop, 2014-11-27
- Host: GitHub
- URL: https://github.com/jni/numpy-skimage-tutorial
- Owner: jni
- License: bsd-3-clause
- Created: 2014-11-25T12:08:30.000Z (almost 10 years ago)
- Default Branch: master
- Last Pushed: 2014-11-27T08:25:19.000Z (almost 10 years ago)
- Last Synced: 2024-10-17T09:09:40.769Z (about 1 month ago)
- Language: Python
- Size: 8.88 MB
- Stars: 2
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
numpy-skimage-tutorial
======================A quick tutorial of NumPy and scikit-image for the COMBINE Python workshop,
2014-11-27## Prerequisites
We will be using the "memory_profiler" module to demonstrate NumPy's memory
advantages. To install it, it's best to create a new conda environment, and
then use "pip":```
conda create -n tutorial --clone root
source activate tutorial
pip install memory_profiler
```## Instructions
Make sure you are running the "tutorial" environment created above. If in
doubt, type "source activate tutorial" before starting below:- Clone this repository.
- cd into the 'notebooks' directory
- run `ipython notebook`
- click on "2014 COMBINE Python Workshop -- NumPy and scikit-image.ipynb"