Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/joachimwolff/schicexplorer
Single-cell Hi-C data analysis toolbox
https://github.com/joachimwolff/schicexplorer
bioinformatics hi-c single-cell
Last synced: 3 months ago
JSON representation
Single-cell Hi-C data analysis toolbox
- Host: GitHub
- URL: https://github.com/joachimwolff/schicexplorer
- Owner: joachimwolff
- License: mit
- Created: 2019-04-17T13:06:04.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2021-08-13T07:23:34.000Z (over 3 years ago)
- Last Synced: 2023-03-03T00:19:24.377Z (almost 2 years ago)
- Topics: bioinformatics, hi-c, single-cell
- Language: Python
- Homepage: https://schicexplorer.readthedocs.io/
- Size: 39.2 MB
- Stars: 10
- Watchers: 1
- Forks: 1
- Open Issues: 2
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
README
|azure| |rtd| |conda|
.. |azure| image:: https://dev.azure.com/wolffj/scHiCExplorer/_apis/build/status/joachimwolff.scHiCExplorer?branchName=master
:target: https://dev.azure.com/wolffj/scHiCExplorer/_build/latest?definitionId=1&branchName=master
.. |rtd| image:: https://readthedocs.org/projects/schicexplorer/badge/?version=latest
:target: http://schicexplorer.readthedocs.io/?badge=latest
.. |conda| image:: https://anaconda.org/bioconda/schicexplorer/badges/installer/conda.svg
:target: https://conda.anaconda.org/biocondascHiCExplorer
=============The scHiCExplorer is a software to demultiplex, process, correct, normalize, manipulate, analyse and visualize single-cell Hi-C data. scHiCExplorer supports the mcool file format and stores per cell one Hi-C interaction matrix in it.
.. image:: ./docs/images/scHi-C_workflow.png
Citation
--------Joachim Wolff, Leily Rabbani, Ralf Gilsbach, Gautier Richard, Thomas Manke, Rolf Backofen, Björn A Grüning.
**Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization, Nucleic Acids Research**, Volume 48, Issue W1, 02 July 2020, Pages W177–W184, https://doi.org/10.1093/nar/gkaa220Joachim Wolff, Nezar Abdennur, Rolf Backofen, Björn Grüning.
**Scool: a new data storage format for single-cell Hi-C data, Bioinformatics**, Volume 37, Issue 14, 15 July 2021, Pages 2053–2054, https://doi.org/10.1093/bioinformatics/btaa924Joachim Wolff, Rolf Backofen, Björn Grüning.
**Robust and efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs, Bioinformatics**, btab394, https://doi.org/10.1093/bioinformatics/btab394Availability
------------The easiest way to install scHiCExplorer is using `BioConda `_
::
$ conda install schicexplorer -c bioconda -c conda-forge
Install by cloning this repository
__________________________________You can install any one of the HiCExplorer branches on command line
(linux/mac) by cloning this git repository:::
$ git clone https://github.com/joachimwolff/scHiCExplorer.git
$ cd scHiCExplorer
$ python setup.py installHowever, please take care all dependencies are installed, see the requirements.txt file.
Documentation
-------------Please visit our complete documentation on `readthedocs `_.