Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/johnolafenwa/torchfusion

A modern deep learning framework built to accelerate research and development of AI systems
https://github.com/johnolafenwa/torchfusion

convolutional-neural-networks deep-learning gan machine-learning neural-network python pytorch visualization

Last synced: 7 days ago
JSON representation

A modern deep learning framework built to accelerate research and development of AI systems

Awesome Lists containing this project

README

        

# TorchFusion

A modern deep learning framework built to accelerate research and development of AI systems.

Based on PyTorch and fully compatible with pure PyTorch and other pytorch packages, TorchFusion provides a comprehensive extensible training framework
with trainers that you can easily use to train, evaluate and run inference with your PyTorch models, A GAN framework that greatly simplifies the process of
experimenting with Generative Adversarial Networks [Goodfellow et al. 2014](https://arxiv.org/1406.2661), with concrete implementations of a number of GAN algorithms, and a number of high level network layers and utilities to help you be more productive in your work.

The framework is highly extensible, so you can easily create your own custom trainers for specific purposes.

# New in 2.0

* Improved Trainer Framework
* Support for multiple Inputs and Outputs
* New utilities for loading images, one-hot encoding and more.
* New Gan Framework with multiple layers of abstraction and implementation of
Hinge GANs, GANs with divergence loss, Wasserstein GANs and Relativistic GANs.
* New GAN Applications with support for spectral normalization, conditional batch normalization, self attention, projection gans and resnet generators and discriminators
* A wider range of Initializers
* Enhanced summary function that not only provides you details about number of parameters, layers, input and output sizes
but also provides the number of Flops(Multiply-Adds) for every Linear and Convolution layer in your network.
Now, you can know the exact computational cost of any CNN architecure with just a single function!!!
* Visdom and Tensorboard Support
* Live metrics and loss visualizations, with option to save them permanently
* Support for persisting logs permanently
* Easy to use callbacks

Note: This version of torchfusion is well tested and research-ready, the core framework is now complete, Future releases of TorchFusion will include more specialized functions that will cut across multiple domains of deep learning

An AI Commons project [https://aicommons.science](https://aicommons.science)
Developed and Maintained by [John Olafenwa](https://twitter.com/johnolafenwa) and [Moses Olafenwa](https://twitter.com/OlafenwaMoses), brothers, creators of [ImageAI](https://github.com/OlafenwaMoses/ImageAI ), Authors of [Introduction to Deep Computer Vision](https://john.specpal.science/deepvision) and Co-Founders of [AICommons Global Limited](https://aicommons.science)

# Tutorials and Documentation
Visit [torchfusion.readthedocs.io](https://torchfusion.readthedocs.io) for comprehensive tutorials and examples on how to use Torchfusion


# Installing TorchFusion

 pip3 install --upgrade torchfusion 

# Installing Pytorch
Visit [Pytorch.org](https://pytorch.org) for instructions on installing pytorch.




MNIST in Five Minutes


from torchfusion.layers import *
from torchfusion.datasets import *
from torchfusion.metrics import *
import torch.nn as nn
import torch.cuda as cuda
from torch.optim import Adam
from torchfusion.learners import StandardLearner

#load dataset
train_loader = mnist_loader(size=28,batch_size=64)
test_loader = mnist_loader(size=28,train=False,batch_size=64)

#define model
model = nn.Sequential(
Flatten(),
Linear(784,100),
Swish(),
Linear(100,100),
Swish(),
Linear(100,100),
Swish(),
Linear(100,10)
)

#move to GPU if available
if cuda.is_available():
model = model.cuda()

#Setup optimizer and loss function
optimizer = Adam(model.parameters())
loss_fn = nn.CrossEntropyLoss()

#Define metrics
train_metrics = [Accuracy()]
test_metrics = [Accuracy()]

#Initiate Learner
learner = StandardLearner(model)

if __name__ == "__main__":

#Print summary of the model
print(learner.summary((1,28,28)))

#initiate training
learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer,loss_fn=loss_fn,test_loader=test_loader,test_metrics=test_metrics,num_epochs=30,batch_log=False)




GAN in Five Minutes


from torchfusion.gan.learners import *
from torchfusion.gan.applications import StandardGenerator,StandardProjectionDiscriminator
from torch.optim import Adam
from torchfusion.datasets import fashionmnist_loader
import torch.cuda as cuda
import torch.nn as nn

#Define generator and discriminator
G = StandardGenerator(output_size=(1,32,32),latent_size=128)
D = StandardProjectionDiscriminator(input_size=(1,32,32),apply_sigmoid=False)

#Move to GPU if available
if cuda.is_available():
G = nn.DataParallel(G.cuda())
D = nn.DataParallel(D.cuda())

#Setup optimizers
g_optim = Adam(G.parameters(),lr=0.0002,betas=(0.5,0.999))
d_optim = Adam(D.parameters(),lr=0.0002,betas=(0.5,0.999))

#Load the dataset
dataset = fashionmnist_loader(size=32,batch_size=64)

#Init learner
learner = RStandardGanLearner(G,D)

if __name__ == "__main__":
#init training
learner.train(dataset,gen_optimizer=g_optim,disc_optimizer=d_optim,save_outputs_interval=500,model_dir="./fashion-gan",latent_size=128,num_epochs=50,batch_log=False)

ImageNet Inference

from torchfusion.learners import *
import torch
from torchvision.models.squeezenet import squeezenet1_1
from torchfusion.utils import load_image,decode_imagenet
from torchfusion.datasets import *
INFER_FOLDER = r"./images"
MODEL_PATH = r"squeezenet.pth"

#load images
infer_set = pathimages_loader([INFER_FOLDER],size=224,recursive=False)

#init squeezenet
net = squeezenet1_1()

#init learner and load squeezenet model
learner = StandardLearner(net)
learner.load_model(MODEL_PATH)

#function for predicting from a loader
def predict_loader(data_loader):
predictions = learner.predict(data_loader)
for pred in predictions:
pred = torch.softmax(pred,0)
class_index = torch.argmax(pred)
class_name = decode_imagenet(class_index)
confidence = torch.max(pred)
print("Prediction: {} , Confidence: {} ".format(class_name, confidence))

#function for predict a single image
def predict_image(image_path):
img = load_image(image_path,target_size=224,mean=0.5,std=0.5)
img = img.unsqueeze(0)
pred = learner.predict(img)
pred = torch.softmax(pred,0)
class_index = torch.argmax(pred)
class_name = decode_imagenet(class_index)
confidence = torch.max(pred)
print("Prediction: {} , Confidence: {} ".format(class_name, confidence))

if __name__ == "__main__":
predict_loader(infer_set)
predict_image(r"sample.jpg")

Contact Developers





John Olafenwa

Email: [email protected]

Website: https://john.aicommons.science

Twitter: @johnolafenwa

Medium : @johnolafenwa

Facebook : olafenwajohn



Moses Olafenwa

Email: [email protected]

Website: https://moses.aicommons.science

Twitter: @OlafenwaMoses

Medium : @guymodscientist

Facebook : moses.olafenwa




Summary of Resnet50 generated by TorchFusion
Model Summary
Name Input Size Output Size Parameters Multiply Adds (Flops)
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_1 [1, 3, 224, 224] [1, 64, 112, 112] 9408 118013952
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_1 [1, 64, 112, 112] [1, 64, 112, 112] 128 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_1 [1, 64, 112, 112] [1, 64, 112, 112] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
MaxPool2d_1 [1, 64, 112, 112] [1, 64, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_2 [1, 64, 56, 56] [1, 64, 56, 56] 4096 12845056
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_2 [1, 64, 56, 56] [1, 64, 56, 56] 128 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_2 [1, 64, 56, 56] [1, 64, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_3 [1, 64, 56, 56] [1, 64, 56, 56] 36864 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_3 [1, 64, 56, 56] [1, 64, 56, 56] 128 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_3 [1, 64, 56, 56] [1, 64, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_4 [1, 64, 56, 56] [1, 256, 56, 56] 16384 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_4 [1, 256, 56, 56] [1, 256, 56, 56] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_5 [1, 64, 56, 56] [1, 256, 56, 56] 16384 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_5 [1, 256, 56, 56] [1, 256, 56, 56] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_4 [1, 256, 56, 56] [1, 256, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_1 [1, 64, 56, 56] [1, 256, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_6 [1, 256, 56, 56] [1, 64, 56, 56] 16384 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_6 [1, 64, 56, 56] [1, 64, 56, 56] 128 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_5 [1, 64, 56, 56] [1, 64, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_7 [1, 64, 56, 56] [1, 64, 56, 56] 36864 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_7 [1, 64, 56, 56] [1, 64, 56, 56] 128 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_6 [1, 64, 56, 56] [1, 64, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_8 [1, 64, 56, 56] [1, 256, 56, 56] 16384 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_8 [1, 256, 56, 56] [1, 256, 56, 56] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_7 [1, 256, 56, 56] [1, 256, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_2 [1, 256, 56, 56] [1, 256, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_9 [1, 256, 56, 56] [1, 64, 56, 56] 16384 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_9 [1, 64, 56, 56] [1, 64, 56, 56] 128 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_8 [1, 64, 56, 56] [1, 64, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_10 [1, 64, 56, 56] [1, 64, 56, 56] 36864 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_10 [1, 64, 56, 56] [1, 64, 56, 56] 128 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_9 [1, 64, 56, 56] [1, 64, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_11 [1, 64, 56, 56] [1, 256, 56, 56] 16384 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_11 [1, 256, 56, 56] [1, 256, 56, 56] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_10 [1, 256, 56, 56] [1, 256, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_3 [1, 256, 56, 56] [1, 256, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_12 [1, 256, 56, 56] [1, 128, 56, 56] 32768 102760448
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_12 [1, 128, 56, 56] [1, 128, 56, 56] 256 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_11 [1, 128, 56, 56] [1, 128, 56, 56] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_13 [1, 128, 56, 56] [1, 128, 28, 28] 147456 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_13 [1, 128, 28, 28] [1, 128, 28, 28] 256 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_12 [1, 128, 28, 28] [1, 128, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_14 [1, 128, 28, 28] [1, 512, 28, 28] 65536 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_14 [1, 512, 28, 28] [1, 512, 28, 28] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_15 [1, 256, 56, 56] [1, 512, 28, 28] 131072 102760448
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_15 [1, 512, 28, 28] [1, 512, 28, 28] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_13 [1, 512, 28, 28] [1, 512, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_4 [1, 256, 56, 56] [1, 512, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_16 [1, 512, 28, 28] [1, 128, 28, 28] 65536 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_16 [1, 128, 28, 28] [1, 128, 28, 28] 256 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_14 [1, 128, 28, 28] [1, 128, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_17 [1, 128, 28, 28] [1, 128, 28, 28] 147456 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_17 [1, 128, 28, 28] [1, 128, 28, 28] 256 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_15 [1, 128, 28, 28] [1, 128, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_18 [1, 128, 28, 28] [1, 512, 28, 28] 65536 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_18 [1, 512, 28, 28] [1, 512, 28, 28] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_16 [1, 512, 28, 28] [1, 512, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_5 [1, 512, 28, 28] [1, 512, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_19 [1, 512, 28, 28] [1, 128, 28, 28] 65536 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_19 [1, 128, 28, 28] [1, 128, 28, 28] 256 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_17 [1, 128, 28, 28] [1, 128, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_20 [1, 128, 28, 28] [1, 128, 28, 28] 147456 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_20 [1, 128, 28, 28] [1, 128, 28, 28] 256 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_18 [1, 128, 28, 28] [1, 128, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_21 [1, 128, 28, 28] [1, 512, 28, 28] 65536 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_21 [1, 512, 28, 28] [1, 512, 28, 28] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_19 [1, 512, 28, 28] [1, 512, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_6 [1, 512, 28, 28] [1, 512, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_22 [1, 512, 28, 28] [1, 128, 28, 28] 65536 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_22 [1, 128, 28, 28] [1, 128, 28, 28] 256 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_20 [1, 128, 28, 28] [1, 128, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_23 [1, 128, 28, 28] [1, 128, 28, 28] 147456 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_23 [1, 128, 28, 28] [1, 128, 28, 28] 256 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_21 [1, 128, 28, 28] [1, 128, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_24 [1, 128, 28, 28] [1, 512, 28, 28] 65536 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_24 [1, 512, 28, 28] [1, 512, 28, 28] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_22 [1, 512, 28, 28] [1, 512, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_7 [1, 512, 28, 28] [1, 512, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_25 [1, 512, 28, 28] [1, 256, 28, 28] 131072 102760448
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_25 [1, 256, 28, 28] [1, 256, 28, 28] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_23 [1, 256, 28, 28] [1, 256, 28, 28] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_26 [1, 256, 28, 28] [1, 256, 14, 14] 589824 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_26 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_24 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_27 [1, 256, 14, 14] [1, 1024, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_27 [1, 1024, 14, 14] [1, 1024, 14, 14] 2048 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_28 [1, 512, 28, 28] [1, 1024, 14, 14] 524288 102760448
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_28 [1, 1024, 14, 14] [1, 1024, 14, 14] 2048 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_25 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_8 [1, 512, 28, 28] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_29 [1, 1024, 14, 14] [1, 256, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_29 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_26 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_30 [1, 256, 14, 14] [1, 256, 14, 14] 589824 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_30 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_27 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_31 [1, 256, 14, 14] [1, 1024, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_31 [1, 1024, 14, 14] [1, 1024, 14, 14] 2048 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_28 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_9 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_32 [1, 1024, 14, 14] [1, 256, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_32 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_29 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_33 [1, 256, 14, 14] [1, 256, 14, 14] 589824 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_33 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_30 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_34 [1, 256, 14, 14] [1, 1024, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_34 [1, 1024, 14, 14] [1, 1024, 14, 14] 2048 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_31 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_10 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_35 [1, 1024, 14, 14] [1, 256, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_35 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_32 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_36 [1, 256, 14, 14] [1, 256, 14, 14] 589824 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_36 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_33 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_37 [1, 256, 14, 14] [1, 1024, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_37 [1, 1024, 14, 14] [1, 1024, 14, 14] 2048 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_34 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_11 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_38 [1, 1024, 14, 14] [1, 256, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_38 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_35 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_39 [1, 256, 14, 14] [1, 256, 14, 14] 589824 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_39 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_36 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_40 [1, 256, 14, 14] [1, 1024, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_40 [1, 1024, 14, 14] [1, 1024, 14, 14] 2048 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_37 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_12 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_41 [1, 1024, 14, 14] [1, 256, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_41 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_38 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_42 [1, 256, 14, 14] [1, 256, 14, 14] 589824 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_42 [1, 256, 14, 14] [1, 256, 14, 14] 512 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_39 [1, 256, 14, 14] [1, 256, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_43 [1, 256, 14, 14] [1, 1024, 14, 14] 262144 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_43 [1, 1024, 14, 14] [1, 1024, 14, 14] 2048 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_40 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_13 [1, 1024, 14, 14] [1, 1024, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_44 [1, 1024, 14, 14] [1, 512, 14, 14] 524288 102760448
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_44 [1, 512, 14, 14] [1, 512, 14, 14] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_41 [1, 512, 14, 14] [1, 512, 14, 14] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_45 [1, 512, 14, 14] [1, 512, 7, 7] 2359296 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_45 [1, 512, 7, 7] [1, 512, 7, 7] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_42 [1, 512, 7, 7] [1, 512, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_46 [1, 512, 7, 7] [1, 2048, 7, 7] 1048576 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_46 [1, 2048, 7, 7] [1, 2048, 7, 7] 4096 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_47 [1, 1024, 14, 14] [1, 2048, 7, 7] 2097152 102760448
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_47 [1, 2048, 7, 7] [1, 2048, 7, 7] 4096 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_43 [1, 2048, 7, 7] [1, 2048, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_14 [1, 1024, 14, 14] [1, 2048, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_48 [1, 2048, 7, 7] [1, 512, 7, 7] 1048576 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_48 [1, 512, 7, 7] [1, 512, 7, 7] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_44 [1, 512, 7, 7] [1, 512, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_49 [1, 512, 7, 7] [1, 512, 7, 7] 2359296 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_49 [1, 512, 7, 7] [1, 512, 7, 7] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_45 [1, 512, 7, 7] [1, 512, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_50 [1, 512, 7, 7] [1, 2048, 7, 7] 1048576 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_50 [1, 2048, 7, 7] [1, 2048, 7, 7] 4096 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_46 [1, 2048, 7, 7] [1, 2048, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_15 [1, 2048, 7, 7] [1, 2048, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_51 [1, 2048, 7, 7] [1, 512, 7, 7] 1048576 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_51 [1, 512, 7, 7] [1, 512, 7, 7] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_47 [1, 512, 7, 7] [1, 512, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_52 [1, 512, 7, 7] [1, 512, 7, 7] 2359296 115605504
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_52 [1, 512, 7, 7] [1, 512, 7, 7] 1024 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_48 [1, 512, 7, 7] [1, 512, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Conv2d_53 [1, 512, 7, 7] [1, 2048, 7, 7] 1048576 51380224
----------------------------------------------------------------------------------------------------------------------------------
BatchNorm2d_53 [1, 2048, 7, 7] [1, 2048, 7, 7] 4096 Not Available
----------------------------------------------------------------------------------------------------------------------------------
ReLU_49 [1, 2048, 7, 7] [1, 2048, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Bottleneck_16 [1, 2048, 7, 7] [1, 2048, 7, 7] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
AvgPool2d_1 [1, 2048, 7, 7] [1, 2048, 1, 1] 0 Not Available
----------------------------------------------------------------------------------------------------------------------------------
Linear_1 [1, 2048] [1, 1000] 2049000 2048000
----------------------------------------------------------------------------------------------------------------------------------

Total Parameters: 25557032
----------------------------------------------------------------------------------------------------------------------------------
Total Multiply Adds (For Convolution and Linear Layers only): 4089184256
----------------------------------------------------------------------------------------------------------------------------------
Number of Layers
Conv2d : 53 layers Bottleneck : 16 layers MaxPool2d : 1 layers Linear : 1 layers BatchNorm2d : 53 layers AvgPool2d : 1 layers ReLU : 49 layers