Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jonad/identify_question_pair_with_the_same_intent
Identify question pair with the same intent using Convolutional Neural Network
https://github.com/jonad/identify_question_pair_with_the_same_intent
cnn-keras convolutional-neural-networks gensim nltk-library numpy-library pandas python-3-5 word2vec-algorithm xgboost-model
Last synced: 27 days ago
JSON representation
Identify question pair with the same intent using Convolutional Neural Network
- Host: GitHub
- URL: https://github.com/jonad/identify_question_pair_with_the_same_intent
- Owner: jonad
- License: mit
- Created: 2017-11-02T01:31:06.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2017-12-05T15:41:55.000Z (about 7 years ago)
- Last Synced: 2025-01-19T07:42:25.200Z (about 1 month ago)
- Topics: cnn-keras, convolutional-neural-networks, gensim, nltk-library, numpy-library, pandas, python-3-5, word2vec-algorithm, xgboost-model
- Language: Jupyter Notebook
- Homepage:
- Size: 9.11 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## Project: Identify question pair with the same intent.
## Network archittecture

### Install
* [**Python 3.6**](https://www.python.org/downloads/release/python-350/)
* [**Gensim**](https://radimrehurek.com/gensim/install.html)
* [**Keras 2.0**](https://keras.io/)
* [**NLTK**](http://www.nltk.org/)
* [**xgboost**](https://xgboost.readthedocs.io/en/latest/)### Dataset
* [**Training data**](https://www.kaggle.com/c/quora-question-pairs/data)### Step 1: preprocess data
Navigate to **notebooks** and run the following command```bash
jupyter notebook data_preprocessing.ipynb
```
After running all cells in the notebooks, you will have a preprocessed
data into the data folder
### Step 2: Train the models
Train either the xgboost model or the cnn model by running the
following command from the project's root directory
```bash
python train_cnn.py
```
This will train the neural network model. You can modify this file
to run the model with different parameters
```bash
python train_xgb.py
```
This will train the xgboost model. You can modify this file to run the model
with different parameter.### Amazing Result

### Do not run this code on your laptop, run it on a GPU instance on the cloud.