Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jonathan-s/djantic2
Pydantic model support for Django
https://github.com/jonathan-s/djantic2
django pydantic pydantic-v2
Last synced: 3 months ago
JSON representation
Pydantic model support for Django
- Host: GitHub
- URL: https://github.com/jonathan-s/djantic2
- Owner: jonathan-s
- License: mit
- Created: 2024-03-15T10:06:31.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-05-09T08:44:29.000Z (9 months ago)
- Last Synced: 2024-05-09T09:48:57.924Z (9 months ago)
- Topics: django, pydantic, pydantic-v2
- Language: Python
- Homepage:
- Size: 281 KB
- Stars: 13
- Watchers: 2
- Forks: 2
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Djantic2
Pydantic model support for Django
---
Djantic2 is a fork of djantic which works with pydantic >2, it is a library that provides a configurable utility class for automatically creating a Pydantic model instance for any Django model class. It is intended to support all of the underlying Pydantic model functionality such as JSON schema generation and introduces custom behaviour for exporting Django model instance data.
## Quickstart
Install using pip:
```shell
pip install djantic2
```Create a model schema:
```python
from users.models import User
from pydantic import ConfigDictfrom djantic import ModelSchema
class UserSchema(ModelSchema):
model_config = ConfigDict(model=User, include=["id", "first_name"])print(UserSchema.schema())
```**Output:**
```python
{
"description": "A user of the application.",
"properties": {
"id": {
"anyOf": [{"type": "integer"}, {"type": "null"}],
"default": None,
"description": "id",
"title": "Id",
},
"first_name": {
"description": "first_name",
"maxLength": 50,
"title": "First Name",
"type": "string",
},
},
"required": ["first_name"],
"title": "UserSchema",
"type": "object",
}
```See https://pydantic-docs.helpmanual.io/usage/models/ for more.
### Loading and exporting model instances
Use the `from_django` method on the model schema to load a Django model instance for export:
```python
user = User.objects.create(
first_name="Jordan",
last_name="Eremieff",
email="[email protected]"
)user_schema = UserSchema.from_django(user)
print(user_schema.json(indent=2))
```**Output:**
```json
{
"profile": null,
"id": 1,
"first_name": "Jordan",
"last_name": "Eremieff",
"email": "[email protected]",
"created_at": "2020-08-15T16:50:30.606345+00:00",
"updated_at": "2020-08-15T16:50:30.606452+00:00"
}
```### Using multiple level relations
Djantic supports multiple level relations. This includes foreign keys, many-to-many, and one-to-one relationships.
Consider the following example Django model and Djantic model schema definitions for a number of related database records:
```python
# models.py
from django.db import modelsclass OrderUser(models.Model):
email = models.EmailField(unique=True)class OrderUserProfile(models.Model):
address = models.CharField(max_length=255)
user = models.OneToOneField(OrderUser, on_delete=models.CASCADE, related_name='profile')class Order(models.Model):
total_price = models.DecimalField(max_digits=8, decimal_places=5, default=0)
user = models.ForeignKey(
OrderUser, on_delete=models.CASCADE, related_name="orders"
)class OrderItem(models.Model):
price = models.DecimalField(max_digits=8, decimal_places=5, default=0)
quantity = models.IntegerField(default=0)
order = models.ForeignKey(
Order, on_delete=models.CASCADE, related_name="items"
)class OrderItemDetail(models.Model):
name = models.CharField(max_length=30)
order_item = models.ForeignKey(
OrderItem, on_delete=models.CASCADE, related_name="details"
)
``````python
# schemas.py
from djantic import ModelSchema
from pydantic import ConfigDictfrom orders.models import OrderItemDetail, OrderItem, Order, OrderUserProfile
class OrderItemDetailSchema(ModelSchema):
model_config = ConfigDict(model=OrderItemDetail)class OrderItemSchema(ModelSchema):
details: List[OrderItemDetailSchema]
model_config = ConfigDict(model=OrderItem)class OrderSchema(ModelSchema):
items: List[OrderItemSchema]
model_config = ConfigDict(model=Order)class OrderUserProfileSchema(ModelSchema):
model_config = ConfigDict(model=OrderUserProfile)class OrderUserSchema(ModelSchema):
orders: List[OrderSchema]
profile: OrderUserProfileSchema
model_config = ConfigDict(model=OrderUser)
```Now let's assume you're interested in exporting the order and profile information for a particular user into a JSON format that contains the details accross all of the related item objects:
```python
user = OrderUser.objects.first()
print(OrderUserSchema.from_django(user).json(ident=4))
```**Output:**
```json
{
"profile": {
"id": 1,
"address": "",
"user": 1
},
"orders": [
{
"items": [
{
"details": [
{
"id": 1,
"name": "",
"order_item": 1
}
],
"id": 1,
"price": 0.0,
"quantity": 0,
"order": 1
}
],
"id": 1,
"total_price": 0.0,
"user": 1
}
],
"id": 1,
"email": ""
}
```The model schema definitions are composable and support customization of the output according to the auto-generated fields and any additional annotations.
### Including and excluding fields
The fields exposed in the model instance may be configured using two options: `include` and `exclude`. These represent iterables that should contain a list of field name strings. Only one of these options may be set at the same time, and if neither are set then the default behaviour is to include all of the fields from the Django model.
For example, to include all of the fields from a user model except a field named `email_address`, you would use the `exclude` option:
```python
from pydantic import ConfigDictclass UserSchema(ModelSchema):
model_config = ConfigDict(model=User, exclude=["email_address"])
```In addition to this, you may also limit the fields to only include annotations from the model schema class by setting the `include` option to a special string value: `"__annotations__"`.
```python
from pydantic import ConfigDictclass ProfileSchema(ModelSchema):
website: str
model_config = ConfigDict(model=Profile, include="__annotations__")assert ProfileSchema.schema() == {
"title": "ProfileSchema",
"description": "A user's profile.",
"type": "object",
"properties": {
"website": {
"title": "Website",
"type": "string"
}
},
"required": [
"website"
]
}
```