https://github.com/jonathanwenger/itergp
IterGP: Computation-Aware Gaussian Process Inference (NeurIPS 2022)
https://github.com/jonathanwenger/itergp
gaussian-processes machine-learning neurips-2022 numerical-linear-algebra probabilistic-numerics
Last synced: 3 months ago
JSON representation
IterGP: Computation-Aware Gaussian Process Inference (NeurIPS 2022)
- Host: GitHub
- URL: https://github.com/jonathanwenger/itergp
- Owner: JonathanWenger
- License: mit
- Created: 2022-02-01T00:30:47.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2023-04-12T14:00:38.000Z (about 2 years ago)
- Last Synced: 2025-03-18T09:05:17.027Z (3 months ago)
- Topics: gaussian-processes, machine-learning, neurips-2022, numerical-linear-algebra, probabilistic-numerics
- Language: Python
- Homepage: https://itergp.readthedocs.io
- Size: 19.9 MB
- Stars: 40
- Watchers: 2
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![]()
# IterGP: Computation-Aware Gaussian Process Inference
This repository contains an implementation of the framework described in the paper [Posterior and Computational Uncertainty in Gaussian Processes](https://arxiv.org/abs/2205.15449).
## Installation
You can install the Python package via `pip`:
```bash
pip install git+https://github.com/JonathanWenger/itergp.git
```## Documentation and Tutorials
To understand how to use the functionality of IterGP, take a look at the [API reference](https://itergp.readthedocs.io/en/latest/api.html) and the [tutorials](https://itergp.readthedocs.io/en/latest/tutorials.html).
## Datasets
Any datasets used in the experiments can be accessed via the API:
```python
from itergp import datasetsdata = datasets.uci.BikeSharing(dir="data/uci")
data.train.y
# array([ 0.20011634, -2.74432264, 0.14604912, ..., 0.40556032,
# 0.57590568, -0.54709806])
```If the dataset is not already cached, it will be downloaded and cached locally.
## Citation
```bibtex
@inproceedings{wenger2022itergp,
author = {Jonathan Wenger and Geoff Pleiss and Marvin Pf{\"o}rtner and Philipp Hennig and John P. Cunningham},
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
keywords = {gaussian processes, probabilistic numerics, numerical analysis},
title = {Posterior and Computational Uncertainty in {G}aussian processes},
url = {https://arxiv.org/abs/2205.15449},
year = {2022}
}
```