Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jonfanlab/GLOnet
Global optimization based on generative neural networks
https://github.com/jonfanlab/GLOnet
Last synced: about 2 months ago
JSON representation
Global optimization based on generative neural networks
- Host: GitHub
- URL: https://github.com/jonfanlab/GLOnet
- Owner: jonfanlab
- License: mit
- Created: 2019-05-23T12:15:07.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-11-17T07:11:09.000Z (about 2 years ago)
- Last Synced: 2024-08-04T03:06:52.447Z (5 months ago)
- Language: Python
- Homepage:
- Size: 531 KB
- Stars: 98
- Watchers: 6
- Forks: 40
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome_photonics - glonet: global optimization based on generative neural networks
README
# Global optimization based on generative nerual networks (GLOnet)
## Requirements
We recommend using python3 and a virtual environment
```
virtualenv -p python3 .env
source .env/bin/activate
pip install -r requirements.txt
```When you're done working on the project, deactivate the virtual environment with `deactivate`.
A matlab engine for python is needed for EM simulation. Please refer to [MathWorks Pages](https://www.mathworks.com/help/matlab/matlab_external/install-matlab-engine-api-for-python-in-nondefault-locations.html) for installation.
Path of [RETICOLO](https://www.lp2n.institutoptique.fr/equipes-de-recherche-du-lp2n/light-complex-nanostructures) should be added in the `main.py`
## Training the GLOnet
You can change the parameters by editing `Params.json` in `results` folder.
If you want to train the network, simply run
```
python main.py
```or
```
python main.py --output_dir results --wavelength 900 --angle 60
```to specify non-default output folder or parameters
## Results
All results will store in output_dir/ folder.
-figures/ (figures of generated devices and loss function curve)
-model/ (all weights of the generator)
-outputs/ (500 generated devices in `.mat` format)
-history.mat
-train.log## Citation
If you use this code for your research, please cite:[Simulator-based training of generative models for the inverse design of metasurfaces.
](https://arxiv.org/abs/1906.07843)
Jiaqi Jiang, Jonathan A. Fan[Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network.
](https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b01857)
Jiaqi Jiang, Jonathan A. Fan