Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jonperk318/machine-learning-analysis-of-hyperspectral-data
Using Non-negative Matrix Factorization (NMF) and Variational Autoencoder (VAE) machine learning architectures to analyze spatial and spectral features of hyperspectral cathodoluminescence (CL) spectroscopy images taken from hybrid inorganic-organic perovskite material
https://github.com/jonperk318/machine-learning-analysis-of-hyperspectral-data
data-analysis data-science deep-neural-networks explained-variance hybrid-perovskite hyperspectral-image-classification machine-learning matplotlib nmf non-negative-matrix-factorization python pytorch scikit-learn semi-supervised-learning signal-processing solar-energy spectroscopy unsupervised-learning vae variational-autoencoder
Last synced: about 2 months ago
JSON representation
Using Non-negative Matrix Factorization (NMF) and Variational Autoencoder (VAE) machine learning architectures to analyze spatial and spectral features of hyperspectral cathodoluminescence (CL) spectroscopy images taken from hybrid inorganic-organic perovskite material
- Host: GitHub
- URL: https://github.com/jonperk318/machine-learning-analysis-of-hyperspectral-data
- Owner: jonperk318
- License: mit
- Created: 2024-01-31T20:32:31.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-09-15T22:18:42.000Z (4 months ago)
- Last Synced: 2024-09-16T00:11:07.051Z (4 months ago)
- Topics: data-analysis, data-science, deep-neural-networks, explained-variance, hybrid-perovskite, hyperspectral-image-classification, machine-learning, matplotlib, nmf, non-negative-matrix-factorization, python, pytorch, scikit-learn, semi-supervised-learning, signal-processing, solar-energy, spectroscopy, unsupervised-learning, vae, variational-autoencoder
- Language: Jupyter Notebook
- Homepage: https://research.jayandsparrow.com/
- Size: 853 MB
- Stars: 2
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE