An open API service indexing awesome lists of open source software.

https://github.com/joric/oneliners

A brilliant repository of fantastic, killer one-liners
https://github.com/joric/oneliners

leetcode one-liners python

Last synced: 2 months ago
JSON representation

A brilliant repository of fantastic, killer one-liners

Awesome Lists containing this project

README

        

## Oneliners

Just FYI, this repository isn't just README.md, it's also more than a thousand solutions [here](./leetcode).

### Leetcode-specific

Leetcode imports modules as wildcards, so you don't have to specify module names. There are some exceptions:

* Single `bisect()` without a prefix triggers `object is not callable`, use `bisect.bisect()` or `bisect_left()`.
* You have to specify `re.sub` because `sub` without a prefix is `operator.sub`.
* Default `pow` is `__builtins__['pow']` (supports up to 3 arguments, including the modulus), not `math.pow`.

For example, Leetcode header has `import * from itertools`, so we use `comb()` instead of `itertools.comb()`:

* https://leetcode.com/problems/unique-paths

```python
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
return comb(m+n-2, n-1)
```

You can also use `__import__('module').func` for unlisted modules (namely, `numpy`, `scipy`, and `sortedcontainers`).

* https://leetcode.com/problems/check-if-it-is-a-straight-line

```python
class Solution:
def checkStraightLine(self, p):
return __import__('numpy').linalg.matrix_rank([[1]+x for x in p])<3
```

Sometimes you can save on casting of the return type, e.g. Leetcode autoconverted keys and mixed types to lists.

* https://leetcode.com/problems/top-k-frequent-elements

```python

class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
return dict(Counter(nums).most_common(k))
```

It also automatically evaluated generators (stopped worked in Aug 2023, `expected return type integer[]`):

* https://leetcode.com/problems/counting-bits

```python
class Solution:
def countBits(self, n: int) -> List[int]:
return map(int.bit_count,range(n+1))
```

You can also return linked list of values as `ListNode('a,b,...')`. This one is really specific, but sometimes useful.

* https://leetcode.com/problems/add-two-numbers

```python
class Solution:
def addTwoNumbers(self, a: Optional[ListNode], b: Optional[ListNode]) -> Optional[ListNode]:
f=lambda n:n and n.val+10*f(n.next)or 0;return ListNode(','.join([*str(f(a)+f(b))][::-1]))
```

Leetcode also has `serialize` and `deserialize` functions for lists and trees:

* https://leetcode.com/problems/reverse-linked-list

```python
class Solution:
def reverseList(self, h: Optional[ListNode]) -> Optional[ListNode]:
return h and h.deserialize(str(eval(h.serialize(h))[::-1]))
```

There is also `has_sycle` function:

* https://leetcode.com/problems/linked-list-cycle

```python
class Solution:
def hasCycle (self, h: Optional[ListNode]) -> bool:
return ListNode.has_cycle(h)
```

There are also `_*_node_to_array` and `_array_to_*_node` functions:

* https://leetcode.com/problems/palindrome-linked-list

```python
class Solution:
def isPalindrome(self, h: ListNode) -> bool:
return(s:=type(h)._list_node_to_array(h))==s[::-1]
```

You can also dump the entire preprocessed solution file to check all the imports for yourself (see [gist](https://gist.github.com/joric/90422e5c4729581a465a9904e4c292db)):

```python
with open(__file__, 'rt') as f:
print(f.read())
```

The solution driver code writes all results to the `user.out` file, so we can use it like this:

* https://leetcode.com/problems/two-sum

```python
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
from zlib import decompress
from base64 import b64decode
open('user.out', 'wb').write(decompress(b64decode('eJzdkMEVwCAIQ++dggFyEKi2zuLr/mtItZb63KAc\
kpfwuVAYFK6tCIjNPH1KncodJMuBTqWTYUGe89hNX1Kd/K2Nh1iM3mYbkMlpIaFrvvcCaVwCH+YB3FSHVu5xXDc='))),exit(0)
```

There is no approved method to get all the test cases for problems in LeetCode.
You can, however, leverage the fact that LeetCode reveals the test case that causes your code to fail.
The solution above is not very reliable, because tests and environment may change, but it's pretty fast.

* https://leetcode.com/discuss/feedback/4643730/a-python-solution-that-contain-malicious-payload-in-your-website

You can explore the sandbox using shell commands, e.g. (see [gist](https://gist.github.com/joric/66d5598a912ce76cbba8bacab2d350ad)):

```python
import subprocess
print(subprocess.run(["ls", "-la", "/"]))
```

You can set your own execution time using `atexit` (worked in March 2025):

* https://leetcode.com/discuss/post/6269419/0ms-bug-leetcode-by-phamvietanhvietnames-tuj2/

```python
__import__('atexit').register(lambda: open("display_runtime.txt", "w").write("0")) # 0..2147483647
```

See https://github.com/LeetCode-Feedback/LeetCode-Feedback/issues/25646 (`we have decided not to allocate development resources to fixing it at this time.`)

### Minus-two-liners

Some leetcode problems may be solved at the function declaration level.

* https://leetcode.com/problems/search-insert-position

```python
class Solution:searchInsert=bisect_left
```

* https://leetcode.com/problems/permutations

```python
class Solution:permute=permutations
```

* https://leetcode.com/problems/sort-an-array

```python
class Solution:sortArray=sorted
```

* https://leetcode.com/problems/bulb-switcher

```python
class Solution:bulbSwitch=isqrt
```

* https://leetcode.com/problems/search-in-rotated-sorted-array-ii

```python
class Solution:search=contains
```

* https://leetcode.com/problems/powx-n

```python
class Solution:myPow=pow
```

Note that it only works for the built-in functions, they can omit `self` parameter.
It's a built-in CPython feature:

* https://stackoverflow.com/questions/10729909/convert-builtin-function-type-to-method-type-in-python-3

You cannot use your own function like that, without skipping the first argument.

* https://leetcode.com/problems/reverse-words-in-a-string-iii

```python
class Solution:reverseWords=lambda _,s:' '.join(w[::-1]for w in s.split())
```

It's not necessarily shorter, because lambdas can't use semicolons.

In some cases you don't even have to write "class Solution:", e.g:

* https://leetcode.com/problems/serialize-and-deserialize-binary-tree

```python
Codec=TreeNode
```

### Shortest

Let's consider function declaration is zero lines.

* https://leetcode.com/problems/account-balance-after-rounded-purchase

```python
class Solution:
def accountBalanceAfterPurchase(self, x: int) -> int:
return(104-x)//10*10
```

* https://leetcode.com/problems/majority-element

```python
class Solution:
def majorityElement(self, n: List[int]) -> int:
return mode(n)
```

* https://leetcode.com/problems/count-of-matches-in-tournament

```python
class Solution:
def numberOfMatches(self, n: int) -> int:
return~-n
```

* https://leetcode.com/problems/stone-game

```python
class Solution:
def stoneGame(self, piles: List[int]) -> bool:
return 1
```

You can also write:

```python
class Solution:stoneGame=truth
```

* https://leetcode.com/problems/strictly-palindromic-number

```python
class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
0
```

This is 1-symbol solution. Notice no return operator here, can be `pass`, as function returns None. You can also do:

```python
class Solution:isStrictlyPalindromic=not_
```

### Lambdas

Fictitious (anonymous) lambdas may be nested. E.g. you can use lambdas as parameters:

* `(lambda a,b,c: code)(a,b,c)` becomes `(lambda a,b,c: code)(lambda a: code, lamda b: code, lambda c: code)`

You can't unpack lambda tuples in Python 3 since [PEP 3113](https://peps.python.org/pep-3113/), however, if your lambda is flat, there is an upgrade path:

* `lambda (x, y): x + y` in Python 2 becomes `lambda xy:(lambda x,y: x+y)(*xy)` in Python 3.

You can also unpack multiple tuples as `lambda xy,ab:(lambda x,y,a,b: x+y+a+b)(*(xy+ab))`.

* https://leetcode.com/problems/count-vowels-permutation

```python
class Solution:
def countVowelPermutation(self, n: int) -> int:
return sum(reduce(lambda x,_:(lambda a,e,i,o,u:(e+i+u,a+i,e+o,i,i+o))(*x),[0]*(n-1),[1]*5))
%(10**9+7)
```

Sometimes you can unpack tuples with starmap:

* https://leetcode.com/problems/length-of-longest-fibonacci-subsequence

```python
class Solution:
def lenLongestFibSubseq(self, n: List[int]) -> int:
s={*n};return(0,t:=max(starmap(f:=lambda a,b,c=2:s&{a+b}and f(b,a+b,c+1)or c,
combinations(n,2))))[t>2]
```

### Generators

Generator expressions `(x for y in z)` are memory efficient since they only require memory for
the one value they yield. If you don't care about memory you can use square brackets to make it a list comprehension that automatically runs the loop.
You can also exhaust a generator using `all()`, `any()` or `sum()`, depending on the return values.
You can also save a few chars using `[*g]` syntax instead of `list(g)` where g is a generator function.
Generator length `len(list(g))` can be calculated in constant memory as `sum(1 for _ in g)`.

Generator expansion `[*g]` may use a traling comma `*g,` in the initialization section (1 character shorter).

* https://leetcode.com/problems/maximum-absolute-sum-of-any-subarray

```python
class Solution:
def maxAbsoluteSum(self, a: List[int]) -> int:
a=[*accumulate([0]+a)];return max(a)-min(a)

class Solution:
def maxAbsoluteSum(self, a: List[int]) -> int:
a=*accumulate([0]+a),;return max(a)-min(a)
```

### Iterators

Generators provide an easy, built-in way to create instances of Iterators.
Iterators are objects that have an `__iter__` and a `__next__` method.
The `iter()` method returns an iterator for the given argument.
Each access iterator advances one step.
May be useful, e.g. this solution would not work without converting a string to an iterator:

* https://leetcode.com/problems/append-characters-to-string-to-make-subsequence

```python
class Solution:
def appendCharacters(self, s: str, t: str) -> int:
s=iter(s);return sum(c not in s for c in t)
```

You can also use `iter()` to split a list into chunks. The `[iter(s)]*n` trick breaks a list into pieces of size n:

* https://leetcode.com/problems/minimum-number-of-changes-to-make-binary-string-beautiful

```python
class Solution:
def minChanges(self, s: str) -> int:
return sum(map(ne,s[::2],s[1::2]))

class Solution:
def minChanges(self, s: str) -> int:
return sum(map(ne,s:=iter(s),s))

class Solution:
def minChanges(self, s: str) -> int:
return sum(map(ne,*[iter(s)]*2))
```

### Dictionaries

Starting from python version 3.7 dictionary order is guaranteed to be insertion order.

* Implementation proposal: https://mail.python.org/pipermail/python-dev/2012-December/123028.html

A simple Hash Table consists of key-value pair arranged in pseudo random order based on the calculations from Hash Function.
The traditional implementation of python dict used a sparse array which had lots of unused spaces in between.
The new implementation uses a combination of dense array and sparse array,
the dense array stores the key-value pair while the sparse array stores the indices to this dense array.

* Faster iteration (up to 2x faster, https://mail.python.org/pipermail/python-dev/2017-December/151283.html)
* Order is maintained on iterating and converting a dictionary to other data type.
* Less memory required for both usage and creation of dictionaries.

### Counters

Counters (`collections.Counter()`) can be updated, similar to `dict.update()`, it's much faster than a sum of counters.
E.g. `c[i]+=1` is equivalent to `c.update([i])`, `c[i]-=1` is `c.update({i:-1})`.
To delete a key you can use the `.pop` method (same as `del`), it's shorter than `popitem()`.

Note that `c.update({i:x})` and `setitem(c,i,c[i]+x)` behaves differently. If x is negative and count becomes `<=0`, the key is removed.

You can also remove zero and negative values manually (there is an the official way, see [documentation](https://docs.python.org/3/library/collections.html#collections.Counter)):

```python
c = Counter({1:1,2:0,3:-1}); print(c:=+c) #{1: 1}, same as c += Counter()
```

Since python 3.7, as a dict subclass, Counter inherited the capability to remember insertion order.

* https://leetcode.com/problems/reduction-operations-to-make-the-array-elements-equal

```python

class Solution:
def reductionOperations(self, n: List[int]) -> int:
return sum(i*v for i,(_,v)in enumerate(sorted(Counter(n).items())))

class Solution:
def reductionOperations(self, n: List[int]) -> int:
return sum(i*v for i,v in enumerate(Counter(sorted(n)).values()))

```

Since Python 3.10 you can use `total()` to compute sum of the counts.

* https://leetcode.com/problems/minimum-number-of-steps-to-make-two-strings-anagram

```python
class Solution:
def minSteps(self, s: str, t: str) -> int:
return sum((Counter(s)-Counter(t)).values())

class Solution:
def minSteps(self, s: str, t: str) -> int:
return(Counter(s)-Counter(t)).total()
```

Sometimes you can replace `Counter` with `set` and `count` (and it's even faster):

* https://leetcode.com/problems/construct-k-palindrome-strings

```python
class Solution:
def canConstruct(self, s: str, k: int) -> bool:
return sum(x&1 for x in Counter(s).values())<=k<=len(s)

class Solution:
def canConstruct(self, s: str, k: int) -> bool:
return sum(1&s.count(x)for x in set(s))<=k<=len(s)
```

* https://leetcode.com/problems/minimum-length-of-string-after-operations

```python
class Solution:
def minimumLength(self, s: str) -> int:
return sum(2-x%2 for x in Counter(s).values())

class Solution:
def minimumLength(self, s: str) -> int:
return sum(2-s.count(x)%2 for x in set(s))
```

Unlike `dict`, python `set` does NOT maintain insertion order. There are modules that implements ordered set.

* [sortedcontainers](https://pypi.org/project/sortedcontainers/) - `SortedList`, `SortedDict`, `SortedSet` (maintains sorted order).
* [sortedcollections](https://pypi.org/project/sortedcollections/) - `ValueSortedDict`, `ItemSortedDict`, `OrderedDict`, `OrderedSet` ([maintains insertion order](https://www.educative.io/answers/what-is-orderedset-in-python)).

You can use `SortedList` in a bunch of problems instead of a heap.

* https://leetcode.com/problems/minimize-deviation-in-array

```python
class Solution:
def minimumDeviation(self, nums: List[int]) -> int:
r,q = inf,[]
for a in nums:
heappush(q,a%2 and -a*2 or -a)
m = -max(q)
while len(q) == len(nums):
a = -heappop(q)
r = min(r, a - m)
if a%2==0:
m = min(m, a//2)
heappush(q, -a//2)
return r

from sortedcontainers import SortedList

class Solution:
def minimumDeviation(self, nums: List[int]) -> int:
s,r = SortedList(i*2 if i & 1 else i for i in nums),inf
while True:
r = min(r,s[-1]-s[0])
if 1&s[-1]: break
s.add(s.pop()//2)
return r

class Solution:
def minimumDeviation(self, a: List[int]) -> int:
s,r=__import__('sortedcontainers').SortedList(i*(1+i%2)for i in a),inf;
return next(r for _ in count()if[r:=min(r,s[-1]-s[0])]and 1&s[-1]or s.add(s.pop()//2))
```

### Walrus operator

The controversial walrus operator (`:=`) added in Python 3.8 ([PEP-572](https://peps.python.org/pep-0572/)
that made [Guido to resign](https://www.infoworld.com/article/3292936/guido-van-rossum-resigns-whats-next-for-python.html)),
can be used to define or update a variable or a function (mostly used for recursive functions).

You can define and call a recursive function in a single line with Y-combinator, e.g.:

```python
return (lambda y,x:y(y,x))(lambda f,x:1 if x==0 else x*f(f,x-1),5)
```

But the walrus operator syntax is much more concise:

```python
return (f:=lambda x:1 if x==0 else x*f(x-1))(5)
```

Many oneliners would be impossible to do without it (or rather, very hard, with nested lambdas).
Sometimes you don't even need extra brackets, e.g. in `map(f:=x,y)` or `next(g,f:=x)` so it may be shorter than operators separated by semicolons.

* https://leetcode.com/problems/time-needed-to-inform-all-employees

```python
class Solution:
def numOfMinutes(self, n: int, h: int, m: List[int], t: List[int]) -> int:
return max(map(f:=cache(lambda i:~i and t[i]+f(m[i])),m))
```

* https://leetcode.com/problems/guess-number-higher-or-lower

```python
class Solution(object):
def guessNumber(self, n: int) -> int:
l,r = 1, n
while l <= r:
m = (l + r) // 2
res = guess(m)
if res == 0:
return m
elif res > 0:
l = m + 1
else:
r = m - 1
return 0

class Solution:
def guessNumber(self, n: int) -> int:
return (f:=lambda l,h:h if l+1==h else f(m,h) if guess(m:=(l+h)//2)>0 else f(l,m))(0,n)
```

* https://leetcode.com/problems/reverse-integer

```python
class Solution:
def reverse(self, x: int) -> int:
r, x = 0, abs(x)
while x:
r = r*10 + x%10
x //= 10
return ((x>0)-(x<0))*min(2**31, r)

class Solution:
def reverse(self, x: int) -> int:
return ((x>0)-(x<0))*min(2**31,(f:=lambda r,x:f(r*10 + x%10, x//10) if x else r)(0,abs(x)))
```

* https://leetcode.com/problems/top-k-frequent-words/discuss/573662/Python-2-lines-heap/1650650

```python
class Solution:
def topKFrequent(self, words: List[str], k: int) -> List[str]:
return nsmallest(k,(f:=Counter(words)).keys(),lambda x:(-f[x],x))
```

### Setting values

You can use `__setattr__` for dictionaries or `__setitem__` for lists (both member functions return `None`).
You can also use `setattr` or `setitem` functions from the `operator` module,
e.g. `c[x]=1` is the same as `setitem(c,x,1)`.

* https://leetcode.com/problems/add-one-row-to-tree/discuss/764593/Python-7-lines

```python
class Solution:
def addOneRow(self, root: TreeNode, v: int, d: int, isLeft: bool = True) -> TreeNode:
if d == 1:
return TreeNode(v, root if isLeft else None, root if not isLeft else None)
if not root:
return None
root.left = self.addOneRow(root.left, v, d - 1, True)
root.right = self.addOneRow(root.right, v, d - 1, False)
return root

class Solution:
def addOneRow(self, root: TreeNode, v: int, d: int, isLeft: bool = True) -> TreeNode:
return TreeNode(v, root if isLeft else None, root if not isLeft else None) if d==1 else \
setattr(root,'left', self.addOneRow(root.left, v, d - 1, True)) or \
setattr(root,'right', self.addOneRow(root.right, v, d - 1, False)) or root if root else None
```

* https://leetcode.com/problems/delete-the-middle-node-of-a-linked-list/discuss/1685130/Python-Recursive-with-comments

```python
class Solution(object):
def deleteMiddle(self, head):
def f(a, b):
if not b:
return a.next
a.next = f(a.next, b.next.next) if b.next else f(a.next, b.next)
return a
return f(head, head.next)

class Solution(object):
def deleteMiddle(self, head):
return (f:=lambda a,b:setattr(a,'next',f(a.next, b.next.next) if b.next
else f(a.next, b.next)) or a if b else a.next)(head, head.next)
```

Note that `setitem` also supports slices:

* https://leetcode.com/problems/count-primes/discuss/111420/Python3-solution-using-Sieve-of-Eratosthenes-time-is-O(n)

```python
# TLE, too slow
class Solution:
def countPrimes(self, n):
g=range(2,n);return len(reduce(lambda r,x:r-set(range(x**2,n,x))if x in r else r,g,set(g)))

class Solution:
def countPrimes(self, n):
a = [0,0]+[1]*(n-2)
for i in range(2,int(n**0.5)+1):
if a[i]:
a[i*i:n:i] = [0]*len(a[i*i:n:i])
return sum(a)

class Solution:
def countPrimes(self, n):
return sum(reduce(lambda a,i:a[i] and setitem(a,slice(i*i,n,i),[0]*len(a[i*i:n:i])) or a,
range(2,int(n**0.5)+1), [0,0]+[1]*(n-2)))
```

You can also calculate primes like this:

* https://leetcode.com/problems/prime-subtraction-operation

```python
class Solution:
def primeSubOperation(self, a: List[int]) -> bool:
m,p=1,[0]+[i for i in range(2,999)if all(i%j for j in range(2,i))];\
return all(m<(m:=x-p[bisect_right(p,x-m)-1]+1)for x in a)
```

Note slices can extend the list implicitly, e.g.:

```python
a = [0,1,2]
a[3:4] = [3] # the result is [0,1,2,3]
```
Be careful though, slicing doesn't extend list beyond the slice size:

```python
a = [0,1]
a[3:4] = [3,4] # the result is [0,1,3,4], NOT [0,1,?,3,4] (!)
```

Examples:

* https://leetcode.com/problems/find-the-longest-valid-obstacle-course-at-each-position

```python
class Solution:
def longestObstacleCourseAtEachPosition(self, o: List[int]) -> List[int]:
d = []
for e in o:
i = bisect_right(d,e)
if i==len(d):
d.append(0)
d[i] = e
yield i+1

class Solution:
def longestObstacleCourseAtEachPosition(self, o: List[int]) -> List[int]:
d = []
for e in o:
i = bisect_right(d,e)
d[i:i+1] = [e]
yield i+1

class Solution:
def longestObstacleCourseAtEachPosition(self, o: List[int]) -> List[int]:
d=[];return[setitem(d,slice(i:=bisect_right(d,e),i+1),[e])or i+1for e in o]
```

Sometimes `exec` is shorter than `setitem`.

* https://leetcode.com/problems/design-parking-system

```python
ParkingSystem=type('',(),{'__init__':lambda s,a,b,c:setattr(s,'p',[0,a,b,c]),'addCar':lambda s,t:\
setitem(s.p,t,s.p[t]-1)or s.p[t]>=0})

ParkingSystem=type('',(),{'__init__':lambda s,a,b,c:setattr(s,'p',[0,a,b,c]),'addCar':lambda s,t:\
exec('s.p[t]-=1')or s.p[t]>=0})
```

### Classes

You can write a class or a subclass implementation in one line.

* https://leetcode.com/problems/design-hashset

```python
MyHashSet=type('',(set,),{'remove':set.discard,'contains':set.__contains__})
```

* https://leetcode.com/problems/implement-stack-using-queues

```python
MyStack=type('',(list,),{'push':list.append,'top':lambda s:s[-1],'empty':lambda s:not s})
```

* https://leetcode.com/problems/product-of-the-last-k-numbers

```python
ProductOfNumbers=type('',(list,),{'__init__':lambda s:list.__init__(s,[1]),'add':lambda s,x:
s.append(s[-1]*x)if x else s.__init__(),'getProduct':lambda s,k:s[k:]and s[-1]//s[~k]or 0})
```

Counter subclassing fails since Python 3.7, `type() doesn't support MRO entry resolution; use types.new_class()`.

When you try to use `types.new_class()` it says `TypeError: .__init_subclass__() takes no keyword arguments')`.

This can be avoided by creating the class first, then adding the methods to it separately, e.g.:

* https://leetcode.com/problems/insert-delete-getrandom-o1

```python
с=Counter;с.insert=lambda s,x:s.update({x})or s[x]<2;с.remove=lambda s,x:s.pop(x,0);
с.getRandom=lambda s:choice([*s]);RandomizedSet=с
```

Sometimes (not always) you can skip `__init__` and use static attributes.

* https://leetcode.com/problems/design-underground-system

```python
UndergroundSystem=type('',(),{'h':{},'m':{},'checkIn':lambda s,i,v,t:setitem(s.m,i,(v,t)),
'checkOut':lambda s,i,d,w:(v:=s.m[i][0])and setitem(s.h,(v,d),[*map(sum,zip(s.h.pop((v,d),
(0,0)),(w-s.m[i][1],1)))]),'getAverageTime':lambda s,v,d:truediv(*s.h[v,d])})
```

### Bisect

Binary search can be replaced by the built-in `bisect` methods.
Custom binary search can use either an item getter object or a key function (since Python 3.10).
Stock bisect implementation is in [bisect.py](https://github.com/python/cpython/blob/main/Lib/bisect.py) (you have to know it well).

* https://leetcode.com/problems/guess-number-higher-or-lower

```python

class Solution:
def guessNumber(self, n: int) -> int:
l,r = 1, n
while l <= r:
m = (l + r) // 2
res = guess(m)
if res == 0:
return m
elif res > 0:
l = m + 1
else:
r = m - 1
return 0

class Solution:
def guessNumber(self, n: int) -> int:
return bisect_left(type('',(),{'__getitem__':lambda _,i: -guess(i)})(), 0, 1, n)

class Solution:
def guessNumber(self, n: int) -> int:
return bisect_left(range(n), 0, key=lambda num: -guess(num))
```

Note that built-in methods don't support negative left margin, so you have to subtract it from the result:

* https://leetcode.com/problems/kth-smallest-product-of-two-sorted-arrays.py

```python
class Solution:
def kthSmallestProduct(self, a: List[int], b: List[int], k: int) -> int:
f=lambda x:sum(bisect_right(b,x//y)if y>0 else len(b)-bisect_left(b,ceil(x/y))if y<0 else
(x>=0)*len(b)for y in a)
l,r = -10**10-1, 10**10+1
while l < r:
m = (l + r)//2
if f(m) >= k:
r = m
else:
l = m + 1
return l

class Solution:
def kthSmallestProduct(self, a: List[int], b: List[int], k: int) -> int:
f=lambda x:sum(bisect_right(b,x//y)if y>0 else len(b)-bisect_left(b,ceil(x/y))if y<0 else
(x>=0)*len(b)for y in a)
return bisect_left(range(2*(r:=10**10)),k,key=lambda i:f(i-r))-r

```

### Range

Range in Python 3 supports random access, so you can save a few chars using a long hardcoded range.

* https://leetcode.com/problems/minimum-time-to-repair-cars/

```python
class Solution:
def repairCars(self, r: List[int], c: int) -> int:
return bisect_left(range(c*c*min(r)),c,key=lambda m:sum(isqrt(m//x)for x in r))

class Solution:
def repairCars(self, r: List[int], c: int) -> int:
return bisect_left(range(1<<47),c,key=lambda m:sum(isqrt(m//x)for x in r))
```

### While loops

While loops are not very oneliner-friendly. You can use `next()` function with an endless `count()` generator.
Note that the default parameter runs first so you can use it for the startup code (it's not recalculated in the end).

* https://leetcode.com/problems/two-sum

```python
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
seen = {}
for i,x in enumerate(nums):
if target-x in seen:
return seen[target-x], i
seen[x] = i
return False

class Solution:
def twoSum(self, n: List[int], t: int) -> List[int]:
return next(((m[t-x],i)for i,x in enumerate(n)if t-x in m or setitem(m,x,i)),m:={})
```

* https://leetcode.com/problems/break-a-palindrome/discuss/1481905/Python-3-one-line

```python
class Solution:
def breakPalindrome(self, s: str) -> str:
for i in range(len(s) // 2):
if s[i] != 'a':
return s[:i] + 'a' + s[i + 1:]
return s[:-1] + 'b' if s[:-1] else ''

class Solution:
def breakPalindrome(self, s: str) -> str:
return next((s[:i]+'a'+s[i+1:]for i in range(len(s)//2)if s[i]!='a'),s[:-1]and s[:-1]+'b')
```
* https://leetcode.com/problems/construct-target-array-with-multiple-sums

```python
class Solution:
def isPossible(self, target: List[int]) -> bool:
s = sum(target)
q = [-a for a in target]
heapify(q)
while True:
x = -heappop(q)
if x==1:
return True
if s==x:
return False
d = 1 + (x-1) % (s-x)
if x==d:
return False
s = s - x + d
heappush(q, -d)

class Solution:
def isPossible(self, target: List[int]) -> bool:
return (s:=sum(target),q:=[-a for a in target],heapify(q)) and next((x==1 for _ in count()
if (x:=-heappop(q))==1 or s==x or (d:=1+(x-1)%(s-x))==x or not (s:=s-x+d,heappush(q,-d))),1)
```

You can also use `takewhile()`, it's also a generator, so you need to expand it (e.g. with `repeat(0)`).

* https://leetcode.com/problems/sliding-window-maximum

```python
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
r, d = [], deque()
for i, n in enumerate(nums):
while d and n>=nums[d[-1]]:
d.pop()
d.append(i)
if d[0] == i-k:
d.popleft()
r.append(nums[d[0]])
return r[k-1:]

class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
return (d:=deque()) or reduce(lambda r,p:(
any(takewhile(lambda _:d and p[1]>=nums[d[-1]] and d.pop(), repeat(0))),
d.append(p[0]), d[0]==p[0]-k and d.popleft(), r.append(nums[d[0]])) and r,
enumerate(nums), [])[k-1:]

```

You could also try `any()` or `all()` as a while loop instead of `next()`, it may be shorter.
You can assure that expression never returns `None`, using `[]` (`[None]` evaluates to `True`).

* https://leetcode.com/problems/last-stone-weight

```python

class Solution:
def lastStoneWeight(self, stones: List[int]) -> int:
stones.sort()
while len(stones) > 1:
insort(stones,stones.pop() - stones.pop())
return stones[0]

class Solution:
def lastStoneWeight(self, s: List[int]) -> int:
return next((s[0] for _ in count() if not s[1:] or insort(s,s.pop()-s.pop())),s.sort())

class Solution:
def lastStoneWeight(self, s: List[int]) -> int:
return (s.sort(),all(s[1:] and [insort(s,s.pop()-s.pop())] for _ in count()),s[0])[2]
```

You can also evalulate multiline code with `exec`. Unlike `eval`, is not limited to a single string.

* https://leetcode.com/problems/minimum-one-bit-operations-to-make-integers-zero

```python
class Solution:
def minimumOneBitOperations(self, n: int) -> int:
return next((r for _ in count()if not(n and(r:=r^n,n:=n//2))),r:=0)

class Solution:
def minimumOneBitOperations(self, n: int) -> int:
r=[0];exec('while n:\n r[0]^=n\n n//=2');return r[0]

class Solution:
def minimumOneBitOperations(self, n: int) -> int:
return(f:=lambda n:n and n^f(n//2))(n)
```

### Swapping values

To swap values you can use either `exec` (inline version of `a,b=b,a`) or a temporary variable (`t:=a,a:=b,b:=t`).

Note that `eval` accepts only a single expression, and returns the value of the given expression,
whereas `exec` ignores the return value from its code, and always returns `None`, its use has no effect
on the compiled bytecode of the function where it is used. It does however affect existing variables.

Example:

* https://leetcode.com/problems/sort-colors

```python
class Solution:
def sortColors(self, nums: List[int]) -> None:
def fn(t,b):
red, white, blue = t
return (swap:=lambda a,x,y:exec('a[x],a[y]=a[y],a[x]'),(swap(nums,red,white),
(red+1,white+1,blue))[1] if nums[white]==0 else ((red,white+1,blue) if nums[white]==1
else (swap(nums,white,blue),(red,white,blue-1))[1]))[1]
reduce(fn, nums, [0,0,len(nums)-1])

class Solution:
def sortColors(self, nums: List[int]) -> None:
(s:=lambda a,x,y:(t:=a[x],setitem(a,x,a[y]),setitem(a,y,t),a)[3],
f:=lambda a,i,j,k:(f(s(a,i,j),i+1,j+1,k) if a[j]==0 else f(a,i,j+1,k) if a[j]==1
else f(s(a,j,k),i,j,k-1)) if i<=j<=k else None)[1](nums,0,0,len(nums)-1)
```

Also you can try a swap function here (but it's pretty long, I don't use it):

* https://stackoverflow.com/questions/4362153/lambda-returns-lambda-in-python

```python
swap = lambda a,x,y:(lambda f=a.__setitem__:(f(x,(a[x],a[y])),f(y,a[x][0]),f(x,a[x][1])))()
```

### Map

You can use `map` for a lot of things, for example to traverse through adjacent cells.

* https://leetcode.com/problems/max-area-of-island

```python
class Solution:
def maxAreaOfIsland(self, grid: List[List[int]]) -> int:
def dfs(i,j):
if 0<=i int:
return max((f:=lambda i,j:setitem(g[i],j,0) or 1 + sum(map(f,(i+1,i,i-1,i),(j,j+1,j,j-1)))
if 0<=i bool:
z=0;return len(p)>=len({0,*{z:=z+1j**'NESW'.find(c)for c in p}})
```

You can convert lists or tuples to `True` with `!=0` instead of `bool()` (3 chars shorter).

* https://leetcode.com/problems/number-of-islands

```python
class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
grid = {i + j*1j:int(val) for i,row in enumerate(grid) for j,val in enumerate(row)}
def f(z):
return grid.pop(z,0) and bool([f(z + 1j**k) for k in range(4)])
return sum(map(f, set(grid)))

class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
return sum(map(f:=lambda z:g.pop(z,0) and [f(z + 1j**k) for k in range(4)]!=0,
set(g:={i + j*1j:int(x) for i,row in enumerate(grid) for j,x in enumerate(row)})))
```

* https://leetcode.com/problems/number-of-closed-islands

```python
class Solution:
def closedIsland(self, grid: List[List[str]]) -> int:
g = {i+j*1j:1-x for i,r in enumerate(grid) for j,x in enumerate(r)}
f = lambda z:g.pop(z,0) and [f(z+1j**k) for k in range(4)]!=0
sum(f(z) for z in set(g) if not(0 int:
return (g:={i+j*1j:1-x for i,r in enumerate(grid) for j,x in enumerate(r)},
f:=lambda z:g.pop(z,0) and [f(z+1j**k) for k in range(4)]!=0,[f(z) for z in set(g)
if not(0 int:
def f(z,r):
if x:=g.pop(z,0):
if x==3 and not g:
r = r + 1
for k in range(4):
r = f(z + 1j**k, r)
g.update({z:x})
return r
g = {i + j*1j:x+1 for i, row in enumerate(grid) for j,x in enumerate(row) if x!=-1}
return f(next(z for z,x in g.items() if x==2),0)

class Solution:
def uniquePathsIII(self, grid: List[List[int]]) -> int:
return (g:={i + j*1j:x+1 for i, row in enumerate(grid) for j,x in enumerate(row)
if x!=-1}) and (f:=lambda z,r:[(x:=g.pop(z,0)) and (x==3 and not g and (r:=r+1),
[r:=f(z + 1j**k,r) for k in range(4)],g.update({z:x}))] and r)
(next(z for z,x in g.items() if x==2), 0)

```

### Unicode Find

Unicode find (NOT Union Find) is the greatest trick of all time to solve graph problems.
The idea is to use string replace in a Unicode space. Introduced by Stephan Pochmann.

* https://leetcode.com/problems/redundant-connection/discuss/108002/Unicode-Find-(5-short-lines)

```python
class Solution:
def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:
t = ''.join(map(chr, range(1001)))
for u,v in edges:
if t[u]==t[v]:
return [u,v]
t = t.replace(t[u],t[v])

class Solution:
def findRedundantConnection(self, e: List[List[int]]) -> List[int]:
t=''.join(map(chr,range(1001)));
return next([u,v]for u,v in e if t[u]==(t:=t.replace(t[u],t[v]))[u])
```

Another example:

* https://leetcode.com/problems/swim-in-rising-water

```python

class Solution:
def swimInWater(self, g: List[List[int]]) -> int:
n = len(g)
t,r = ''.join(map(chr,range(n*n))),range(n)
for w,i,j in sorted((g[i][j],i,j)for i,j in product(r,r)):
for x,y in ((i+1,j),(i-1,j),(i,j+1),(i,j-1)):
if n>y>=0<=x int:
n=len(g);t,r=''.join(map(chr,range(n*n))),range(n);return next((w for w,i,j in
sorted((g[i][j],i,j)for i,j in product(r,r))if[t:=t.replace(t[i*n+j],t[x*n+y]) for x,y
in((i+1,j),(i-1,j),(i,j+1),(i,j-1)) if n>y>=0<=x List[int]:
t,c = ''.join(map(chr,range(n))),{}
for u,v,w in edges:
t = t.replace(t[u],t[v])
for u,v,w in edges:
c[t[u]] = c.get(t[u],w)&w
return [0 if u==v else c[t[u]] if t[u]==t[v] else -1 for u,v in query]

class Solution:
def minimumCost(self, n: int, e: List[List[int]], q: List[List[int]]) -> List[int]:
t,c=''.join(map(chr,range(n))),{};all(t:=t.replace(t[u],t[v])for u,v,_ in e);
[setitem(c,t[u],c.get(t[u],w)&w)for u,v,w in e];
return[u!=v and t[u]!=t[v]and-1or c[t[u]]for u,v in q]
```

### Cache

Cache decorator, `@lru_cache` or `@cache` (since Python 3.9) may be used as an inline function `cache(lambda ...)`.
Essentially, a built-in memoization. Brings computation complexity from exponential to quadratic or linear, depending of the problem.
Decorator source code is in [functools.py](https://github.com/python/cpython/blob/main/Lib/functools.py).
You can also implement [C++ version](https://gist.github.com/joric/ed96c06c2e5440e0cbf84b3ff78f3a12) of a cache decorator.

* https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/discuss/2555929/python-oneliner-dfs-with-a-cache-decorator

```python
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
@cache
def dfs(i, k, sell):
return 0 if k==0 or i==len(prices) \
else max(dfs(i+1, k-1, 0) + prices[i], dfs(i+1, k, 1)) if sell \
else max(dfs(i+1, k, 1)-prices[i], dfs(i+1, k, sell))
return dfs(0, k, 0)

class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
return (f:=cache(lambda i,k,s:0 if k==0 or i==len(prices)
else max(f(i+1,k-s,1-s)+prices[i]*(2*s-1),f(i+1,k,s))))(0,k,0)
```

* https://leetcode.com/problems/coin-change

```python
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
@cache
def f(n):
return min([1 + f(n-c) for c in coins]) if n>0 else 0 if n==0 else inf
x = f(amount)
return x if x!=inf else -1

class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
return (lambda x:x if x!=inf else -1)((f:=cache(lambda n:
min([1+f(n-c) for c in coins]) if n>0 else 0 if n==0 else inf))(amount))
```

It is sometimes necessary to reset cache with `cache_clear` between tests to avoid Memory Limit Exceeded error.

* https://leetcode.com/problems/length-of-the-longest-subsequence-that-sums-to-target

```python
class Solution:
def lengthOfLongestSubsequence(self, a: List[int], t: int) -> int:
return(a.sort(),r:=(f:=cache(lambda i,b:b and -inf if b<0 or i<0 else
max(1+f(i-1,b-a[i]),f(i-1,b))))(len(a)-1,t),f.cache_clear())and(-1,r)[r>0]
```

You can also specify maxsize option as `f=lru_cache(maxsize)(lambda ...)` in case of memory issues:

* https://leetcode.com/problems/shortest-common-supersequence

```python

class Solution:
def shortestCommonSupersequence(self, a: str, b: str) -> str:
return(f:=lru_cache(9**5)(lambda i,j:a[i:]and b[j:]and(a[i]==b[j]and a[i]+f(i+1,j+1)
or min(a[i]+f(i+1,j),b[j]+f(i,j+1),key=len))or a[i:]or b[j:]))(0,0)
```

### Reduce

Use it to flatten a loop.

* https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/1006208/python-oneliner-hashmap

```python
class Solution:
def lengthOfLongestSubstring(self, s):
start, res, h = 0, 0, {}
for i, c in enumerate(s):
start = max(start, h.get(c,0))
res = max(res, i - start + 1)
h[c] = i + 1
return res

class Solution:
def lengthOfLongestSubstring(self, s):
def fn(a,b):
start, res, h = a
i, c = b
start = max(start, h.get(c,0))
res = max(res, i - start + 1)
h[c] = i + 1
return start,res,h
return reduce(fn,enumerate(s),[0,0,{}])[1]

class Solution:
def lengthOfLongestSubstring(self, s):
return reduce(lambda a,b:(s:=max(a[0],a[2].get(b[1],0)),max(a[1],b[0]-s+1),
{**a[2],b[1]:b[0]+1}),enumerate(s),(0,0,{}))[1]

class Solution:
def lengthOfLongestSubstring(self, s):
return reduce(lambda a,b:(lambda t,r,h,i,c:(s:=max(t,h.get(c,0)),max(r,i-s+1),
{**h,c:i+1}))(*a,*b),enumerate(s),(0,0,{}))[1]
```

Another example:

* https://leetcode.com/problems/longest-valid-parentheses

```python
class Solution:
def longestValidParentheses(self, s: str) -> int:
def fn(a,b):
r, s = a
i, p = b
return (max(r,i-s[-2][0]), s[:-1]) if p==')' and s[-1][1]=='(' else (r, s+[(i,p)])
return reduce(fn, enumerate(s), (0,[(-1, ')')]))[0]

class Solution:
def longestValidParentheses(self, s: str) -> int:
return reduce(lambda a,b:(max(a[0],b[0]-a[1][-2][0]),a[1][:-1]) if b[1]==')'
and a[1][-1][1]=='(' else (a[0],a[1]+[b]),enumerate(s),(0,[(-1,')')]))[0]
```

### Product

The product function from itertools is sometimes handy.

* https://leetcode.com/problems/ugly-number-ii

```python

class Solution:
def nthUglyNumber(self, n: int) -> int:
return sorted(2**a*3**b*5**c for a in range(32)for b in range(20)for c in range(14))[n-1]

class Solution:
def nthUglyNumber(self, n: int) -> int:
return sorted(2**a*3**b*5**c for a,b,c in product(*map(range,(32,20,14))))[n-1]

class Solution:
def nthUglyNumber(self, n: int) -> int:
return sorted(2**a*3**b*5**c for a,b,c in product(*[range(32)]*3))[n-1]
```

### Combinations

Can be used anywhere in place of nested loops. Example:

* https://leetcode.com/problems/count-prefix-and-suffix-pairs-ii

```python
class Solution:
def countPrefixSuffixPairs(self, w: List[str]) -> int:
r=range(len(w))
return sum(i int:
return sum(b.startswith(a)and b.endswith(a)for a,b in combinations(w,2))

class Solution:
def countPrefixSuffixPairs(self, w: List[str]) -> int:
return sum(a==b[:len(a)]==b[-len(a):]for a,b in combinations(w,2))
```

### Semicolons

Nobody will stop you from using semicolons, but you'd still have to convert while and for loops.

Example:

* https://leetcode.com/problems/swapping-nodes-in-a-linked-list

```python
class Solution:
def swapNodes(self, h: Optional[ListNode], k: int) -> Optional[ListNode]:
q = h
i = 1
d = {}
while q:
d[i] = q
q = q.next
i += 1
d[k].val, d[i-k].val = d[i-k].val, d[k].val
return h

class Solution:
def swapNodes(self, h: Optional[ListNode], k: int) -> Optional[ListNode]:
q=h;i=1;d={};all(q and(setitem(d,i,q),q:=q.next,i:=i+1) for _
in count());d[k].val,d[i-k].val=d[i-k].val,d[k].val;return h

class Solution:
def swapNodes(self, h: Optional[ListNode], k: int) -> Optional[ListNode]:
l=[h]+[h:=h.next for _ in[1]*10**5if h];a,b=l[k-1],l[~k];a.val,b.val=b.val,a.val;return l[0]
```

### Math tricks

Many leetcode problems use Fibonacci sequence that can be calculated using a variety of different methods.

* https://leetcode.com/problems/fibonacci-number

```python
class Solution:
def fib(self, n: int) -> int:
a,b = 0,1
for _ in range(n):
a,b = b,a+b
return a

# classic Binet, https://r-knott.surrey.ac.uk/Fibonacci/fibFormula.html

class Solution:
def fib(self, n: int) -> int:
phi = (1 + sqrt(5)) / 2
return round(pow(phi, n) / sqrt(5))

class Solution:
def fib(self, n: int) -> int:
n-=1;r=5**.5;return round(((1+r)/2)**-~n/r)

class Solution:
def fib(self, n: int) -> int:
r=5**.5;return round(((1+r)/2)**n/r)

# generating function, https://en.wikipedia.org/wiki/Generating_function

class Solution:
def fib(self, n: int) -> int:
x=1<<32;return x**~-n*x*x//(x*x+~x)%x

class Solution:
def fib(self, n: int) -> int:
x=9**n;return x**-~n//(x*x+~x)%x

class Solution:
def fib(self, n: int) -> int:
return pow(x:=2< int:
a=b=1
for _ in range(n):
a,b = b,a+b
return a

class Solution:
def climbStairs(self, n):
return pow(x:=2< int:
return round((599510/325947)**n*39065/116186)

class Solution:
def tribonacci(self, n: int) -> int:
return pow(x:=2< str:
return re.sub(t:='(?i)[aeiou]',lambda m,v=sorted(findall(t,s)):heappop(v),s)
```

* https://leetcode.com/problems/valid-word

```python
class Solution:
def isValid(self, w: str) -> bool:
return match('^(?=.*[aeiou])(?=.*[^0-9aeiou])[a-z0-9]{3,}$',w,I)
```

* https://leetcode.com/problems/make-the-string-great

```python
class Solution:
def makeGood(self, s: str) -> str:
[s:=re.sub(r'(.)(?!\1)(?i:\1)','',s)for _ in s];return s
```

* https://leetcode.com/problems/clear-digits

```python
class Solution:
def clearDigits(self, s: str) -> str:
[s:=re.sub('\D\d','',s)for _ in s];return s
```

* https://leetcode.com/problems/circular-sentence

```python
class Solution:
def isCircularSentence(self, s: str) -> bool:
return not re.search('(.) (?!\\1)',s+' '+s)
```

### Accumulate

There are many uses for `itertools.accumulate`, remember that it supports any function besides the default "sum".

```python
class Solution():
def stalinSort(self, a: List[int]) -> List[int]:
return [x for i,x in enumerate(a)if x>=max(a[:i+1])]

class Solution():
def stalinSort(self, a: List[int]) -> List[int]:
return compress(a,map(ge,a,accumulate(a,max)))
```

### Kadane

For the Kadane-like problems you have to maintain a couple of counters. You can just use `max` on a comprehension.

* https://leetcode.com/problems/maximum-subarray

```python
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
cur_max, max_till_now = 0, -inf
for c in nums:
cur_max = max(c, cur_max + c)
max_till_now = max(max_till_now, cur_max)
return max_till_now

class Solution:
def maxSubArray(self, n: List[int]) -> int:
return max(accumulate(n,lambda c,x:max(c+x,x)))

class Solution:
def maxSubArray(self, n: List[int]) -> int:
c=0;return max(c:=max(c+x,x)for x in n)
```

If there are more counters, you can combine intermediary counter and target counter calculation using a walrus operator.

* https://leetcode.com/problems/maximum-ascending-subarray-sum

```python

class Solution:
def maxAscendingSum(self, n: List[int]) -> int:
p=c=0;return max((c:=x+c*(x>p),p:=x)[0]for x in n)

class Solution:
def maxAscendingSum(self, n: List[int]) -> int:
p=c=0;return max(c:=x+c*(x>p)+0*(p:=x)for x in n)

class Solution:
def maxAscendingSum(self, n: List[int]) -> int:
p=c=0;return max(c:=x+c*(p<(p:=x))for x in n)
```

### Asterisk operator

You can save a few characters using asterisk operator `*`.
One `*` means "expand this as a list", two `**` means "expand this as a dictionary".
Note with `**` you can only expand dictionaries, e.g. `{'a':1, **dict}`.

* https://leetcode.com/problems/check-if-it-is-a-straight-line

```python
class Solution:
def checkStraightLine(self, p):
(a,b),(c,d)=p[:2];return all((x-a)*(d-b)==(c-a)*(y-b)for x,y in p)

class Solution:
def checkStraightLine(self, p):
(a,b),(c,d),*_=p;return all((x-a)*(d-b)==(c-a)*(y-b)for x,y in p)
```

There's a nice way to convert an iterable to list, e.g. `x=[*g]` equals `*x,=g` (1 char shorter). Or expand lists:

* https://leetcode.com/problems/maximum-average-subarray-i

```python
class Solution:
def findMaxAverage(self, n: List[int], k: int) -> float:
s=[0]+[*accumulate(n)];return max(map(sub,s[k:],s))/k

class Solution:
def findMaxAverage(self, n: List[int], k: int) -> float:
s=[0,*accumulate(n)];return max(map(sub,s[k:],s))/k
```

You can also use this syntax to unpack iterables, e.g. `a,*b,c=range(5)` means `a=1;b=[2,3,4];c=5`.

* https://leetcode.com/problems/number-of-ways-to-split-array

```python
class Solution:
def waysToSplitArray(self, a: list[int]) -> int:
return sum(map((sum(a)/2).__le__,accumulate(a[:-1])))

class Solution:
def waysToSplitArray(self, a: list[int]) -> int:
*p,s=accumulate(a);return sum(map((s/2).__le__,p))
```

### Rotations

Rotate array problem was published in Programming Pearls ([pages 624-625 of a September 1983 edition](https://dl.acm.org/doi/pdf/10.1145/358172.358176)).

_The problem continues to look hard until you finally come
up with the right aha! insight. Let's view it as transforming
the array AB into the array BA, but let's also assume we have
a subroutine that reverses the elements in a specified portion
of the array._

Rotating string "ABCDEFGH" by i=3 characters left (n is string length, indexes start from 1):

```c
reverse(1, i) /* CBADEFGH */
reverse(i+1, n) /* CBAHGFED */
reverse(1, n) /* DEFGHABC */
```

_This implementation of rotating a ten-element array up by
five positions ([Figure 1](https://i.imgur.com/UvQJ6tu.png)) is from Doug Mcllroy; try it.
The reversal code is time- and space-efficient, and is so
short and simple that it's pretty hard to get wrong._

_It is exactly the code that Kernighan and Plauger use in the text
editor in their book. Brian Kernighan reports that this code
indeed ran correctly the first time it was executed, while
their previous code for a similar task contained several bugs.
This code is also used in several text editors, including the
UNIX editor ed._

* https://leetcode.com/problems/rotate-array

```python
# rotate array AKA Doug Mcllroy, Programming Pearls
# reverse parts at split point then reverse whole array
# you can do it in a reverse order to change direction
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
def reverse(i, j):
while i < j:
nums[i], nums[j] = nums[j], nums[i]
i, j = i+1, j-1
n = len(nums)
k = k % n
reverse(0, n-1)
reverse(0, k-1)
reverse(k, n-1)
return nums
```

It's pretty suboptimal though. Reversing three times is simplest but moves every element exactly twice, takes O(N) time and O(1) space
It is possible to circle shift an array moving each element exactly once also in O(N) time and O(1) space
(https://stackoverflow.com/questions/876293/fastest-algorithm-for-circle-shift-n-sized-array-for-m-position).

```python
# GCD solution, true O(n)
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
n = len(nums)
shift = n - (k % n)
for i in range(gcd(n, shift)):
j = i
while (k := (j + shift) % n) != i:
nums[j],nums[k] = nums[k],nums[j]
j = k
```

Other ways:

```python
# using built-in reverse function
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
k = k % len(nums)
nums[:k] = reversed(nums[:k])
nums[k:] = reversed(nums[k:])
nums.reverse()

# not inplace
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
[nums.insert(0,nums.pop()) for _ in range(k)]

# deque built-in rotate method
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
nums[:]=(q:=deque(nums)).rotate(k) or q

# minified
class Solution:
def rotate(self, a: List[int], k: int) -> None:
k%=len(a);a[:]=a[-k:]+a[:-k]
```

There also problems where you have to determine if string was rotated. The trick is to search in a string concatenated with its copy.

* https://leetcode.com/problems/repeated-substring-pattern/solutions/826417/rust-oneliner-by-joric-mmmu/

_If s consists of repeating parts then at some point it should be equal to the rotated version of itself.
Checking If s is a sub-string of (s+s)[1:-1] basicaly does all the job of checking for all rotated versions
of s except s+s just in a single operation (which is usually SIMD-accelerated)._

```python
class Solution:
def repeatedSubstringPattern(self, s: str) -> bool:
return s in (s+s)[1:-1]
```

* https://leetcode.com/problems/check-if-array-is-sorted-and-rotated/

```python
class Solution:
def check(self, a: List[int]) -> bool:
return sum(map(gt,a,a[1:]+a))<2
```

### Itemgetter

Note that `key=itemgetter(n)` is the same length as `key=lambda x:x[n]` but a little bit clearer to read.
The performance of itemgetter is also better than lambda (up to 2x, because of the creation of the lambda).

Sometimes you can skip `key=itemgetter(0)` in comparison operations by converting an argument
to a tuple (15 characters shorter).

* https://leetcode.com/problems/maximum-profit-in-job-scheduling

```python

class Solution:
def jobScheduling(self, s: List[int], e: List[int], p: List[int]) -> int:
a=sorted(zip(s,e,p));return(f:=cache(lambda i:i-len(a)and max(f(
bisect_left(a,a[i][1],key=itemgetter(0)))+a[i][2],f(i+1))))(0)

class Solution:
def jobScheduling(self, s: List[int], e: List[int], p: List[int]) -> int:
a=sorted(zip(s,e,p));return(f:=cache(lambda i:i-len(a)and max(f(
bisect_left(a,(a[i][1],)))+a[i][2],f(i+1))))(0)

```

### Pop

You could also use `map(list.pop, v)` instead of `[x[-1] for x in v]` to collect the last elements of the list.

* https://leetcode.com/problems/diagonal-traverse-ii

```python
class Solution:
def findDiagonalOrder(self, n: List[List[int]]) -> List[int]:
return map(list.pop,sorted([i+j,j,t]for i,r in enumerate(n)for j,t in enumerate(r)))
```

### Zip

Using `zip` to get elements from the list of tuples is usually shorter, but not always:

* https://leetcode.com/problems/minimum-number-of-vertices-to-reach-all-nodes

```python
class Solution:
def findSmallestSetOfVertices(self, n: int, edges: List[List[int]]) -> List[int]:
return {*range(n)}-{*[*zip(*edges)][1]}

class Solution:
def findSmallestSetOfVertices(self, n: int, edges: List[List[int]]) -> List[int]:
return {*range(n)}-{j for _,j in edges}
```

### Comparison chaining

Python has comparison chaining. You can use expressions like `0<=ij>=0<=i int:
def f(v,w,j=0):
for i in range(len(v)):
if j int:
return sum((f:=lambda v,w,j=0:next((0 for i in range(len(v)) if not(j bool:
return n>0 and log(n,4)%1==0

class Solution:
def isPowerOfFour(self, n: int) -> bool:
return n>0==log(n,4)%1
```

You can check if any of the numbers is negative as `x|y<0` or if both numbers are non-zero as `x|y`.

* https://leetcode.com/problems/minimum-path-sum

```python
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
return (f:=cache(lambda i,j:i|j<0 and inf or grid[i][j]+(i|j and min(f(i,j-1),f(i-1,j)))))
(len(grid)-1,len(grid[0])-1)
```

You can use bitwise `&`,`|` instead of `and`,`or` where possible. You can use `x&1` instead of `x==1`, if 0<=x<=2.

* https://leetcode.com/problems/scramble-string

```python

class Solution:
def isScramble(self, s1: str, s2: str) -> bool:
return (f:=cache(lambda a,b:a==b or any((f(a[:i],b[:i]) and f(a[i:],b[i:]))
or (f(a[i:],b[:-i]) and f(a[:i],b[-i:])) for i in range(1,len(a)))))(s1,s2)

class Solution:
def isScramble(self, s1: str, s2: str) -> bool:
return (f:=cache(lambda a,b:a==b or any((f(a[:i],b[:i])&f(a[i:],b[i:]))
|(f(a[i:],b[:-i])&f(a[:i],b[-i:])) for i in range(1,len(a)))))(s1,s2)
```

### Bitwise inversion

`~` reverts every bit. Therefore, `~x` means `-x-1`. You can use it as reversed index, i.e. for `i=0`, `a[~i]` means `a[-1]`, etc. or just replace `-x-1` with `~x`.

For integer n, you can write `n+1` as `-~n`, `n-1` as `~-n`. This uses the same number of characters, but can indirectly cut spaces or parens for operator precedence.

* https://leetcode.com/problems/spiral-matrix-ii/

```python
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
r=range(n);return[[4*(n-(a:=min(min(i,n-i-1),min(j,n-j-1))))
*a+(i+j-2*a+1,4*(n-2*a-1)-(i+j-2*a)+1)[i>j] for j in r] for i in r]

class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
r=range(n);return[[4*(n-(a:=min(i,j,~i+n,~j+n)))
*a+(i+j-2*a+1,4*n-6*a-i-j-3)[i>j]for j in r]for i in r]
```

### If-Else

You can replace `0 if x==y else z` with `x-y and z`, it's a little bit counterintuitive, but shorter.

Condition `x if c else y` can be written as `c and x or y`, it's shorter but depends on x (x should not be 0).

* https://leetcode.com/problems/snakes-and-ladders/discuss/173378/Diagram-and-BFS

```python
class Solution:
def snakesAndLadders(self, board: List[List[int]]) -> int:
n,v,q = len(board),{1:0},[1]
def f(i):
x = (i - 1)%n
y = (i - 1)//n
c = board[~y][~x if y%2 else x]
return c if c>0 else i
for i in q:
for j in range(i+1, i+7):
k = f(j)
if k==n*n:
return v[i]+1
if k not in v:
v[k] = v[i]+1
q.append(k)
return -1

class Solution:
def snakesAndLadders(self, board: List[List[int]]) -> int:
return (n:=len(board),v:={1:0},q:=[1]) and next((v[i]+1 for i in q for j in range(i+1,i+7)
if (k:=(x:=(j-1)%n,y:=(j-1)//n) and ((c:=board[~y][y%2 and ~x or x])>0 and c or j))==n*n
or (k not in v and (v.update({k:v[i]+1}) or q.append(k)))),-1)
```

### Boolean

You can use booleans as indices in lists, even nested: `(a,(b,c)[u==w])[x==y]`, or you can multiply by a boolean.

* https://leetcode.com/problems/removing-stars-from-a-string

```python
class Solution:
def removeStars(self, s: str) -> str:
return reduce(lambda r,c:(r[:-1],r+c)[c>'*'],s)
```

* https://leetcode.com/problems/simplify-path

```python
class Solution:
def simplifyPath(self, path: str) -> str:
return'/'+'/'.join(reduce(lambda r,p:(r+[p]*('.'!=p!=''),r[:-1])[p=='..'],path.split('/'),[]))
```

### Cmp

Python 3 lacks `cmp` (3-way compare) and sign function (`copysign(bool(x),x)` is too long), but you can use `(x>0)-(x<0)` for `sign(x)`
and `(a>b)-(a str:
f=cache(lambda i:i0)-(x<0)]
# return(('Tie','Bob')[x<0],'Alice')[x>0] # or like this (1 char shorter)
```

You can replace `cmp` written as `lambda x:(x>0)-(x<0)` with `0..__le__` or `.0.__le__` (11 characters shorter).

* https://leetcode.com/problems/rearrange-array-elements-by-sign

```python
class Solution:
def rearrangeArray(self, n: List[int]) -> List[int]:
n.sort(key=lambda x:(x>0)-(x<0));return chain(*zip(n[len(n)//2:],n))

class Solution:
def rearrangeArray(self, n: List[int]) -> List[int]:
n.sort(key=0..__le__);return chain(*zip(n[len(n)//2:],n))

```

You can replace `x>0` predicate with `0..__lt___` function and replace `x!=0` with `operator.truth` or just `bool`:

* https://leetcode.com/problems/merge-nodes-in-between-zeros

```python
class Solution:
def mergeNodes(self, h: Optional[ListNode]) -> Optional[ListNode]:
return h.deserialize(str([sum(v)for k,v in groupby(eval(h.serialize(h)),bool)if k]))
```

Cmp as a sorting key may be reduced further to a tuple `(x>p,x==p)`.

* https://leetcode.com/problems/partition-array-according-to-given-pivot

```python
class Solution:
def pivotArray(self, a: List[int], p: int) -> List[int]:
return sorted(a,key=lambda x:(x>p,x==p))
```

### Mode

Quite a few things become shorter with `statistics.mode` (most common value of discrete or nominal data).

* https://leetcode.com/problems/find-missing-and-repeated-values

```python
class Solution:
def findMissingAndRepeatedValues(self, g: List[List[int]]) -> List[int]:
return sum(a:=sum(g,[]))-sum({*a}),(n:=len(a))*(n+1)//2-sum({*a})

class Solution:
def findMissingAndRepeatedValues(self, g: List[List[int]]) -> List[int]:
return mode(a:=sum(g,[])),comb(len(a)+1,2)-sum({*a})
```

* https://leetcode.com/problems/set-mismatch

```python
class Solution:
def findErrorNums(self, nums: List[int]) -> List[int]:
t=sum({*nums});return sum(nums)-t,comb(len(nums)+1,2)-t

class Solution:
def findErrorNums(self, nums: List[int]) -> List[int]:
return mode(nums),comb(len(nums)+1,2)-sum({*nums})
```

* https://leetcode.com/problems/majority-element

```python
class Solution:
def majorityElement(self, nums: List[int]) -> int:
return sorted(nums)[len(nums)//2]

class Solution:
def majorityElement(self, nums: List[int]) -> int:
return mode(nums)
```

* https://leetcode.com/problems/find-the-duplicate-number

```python
# https://youtu.be/pKO9UjSeLew (Joma Tech: If Programming Was An Anime)
class Solution:
def findDuplicate(self, nums: List[int]) -> int:
tortoise = hare = nums[0]
while True:
tortoise = nums[tortoise]
hare = nums[nums[hare]]
if tortoise == hare:
break
tortoise = nums[0]
while tortoise != hare:
tortoise = nums[tortoise]
hare = nums[hare]
return hare

class Solution:
def findDuplicate(self, nums: List[int]) -> int:
return mode(nums)
```

### Encode

You can use `s.encode()` instead of `ord` or `map(ord,s)` It's the same length but doesn't need generation evaluation.

* https://leetcode.com/problems/score-of-a-string

```python
class Solution:
def scoreOfString(self, s: str) -> int:
return sum(abs(x-y)for x,y in pairwise(map(ord,s)))

class Solution:
def scoreOfString(self, s: str) -> int:
return sum(map(abs,map(sub,s:=s.encode(),s[1:])))
```

### Enumerate

You can use `count()` and `map` to replace an `enumerate` list comprehension (a few characters shorter):

* https://leetcode.com/problems/maximum-total-importance-of-roads

```python
class Solution:
def maximumImportance(self, n: int, r: List[List[int]]) -> int:
return sum(v*(n-i)for i,(_,v)in enumerate(Counter(chain(*r)).most_common()))

class Solution:
def maximumImportance(self, n: int, r: List[List[int]]) -> int:
return-sum(map(mul,count(-n),sorted(Counter(chain(*r)).values())[::-1]))
```

### Starmap

Starmap makes an iterator that computes the function using arguments obtained from the iterable.
Used instead of map() when argument parameters have already been "pre-zipped" into tuples (see [itertools.starmap](https://docs.python.org/3/library/itertools.html#itertools.starmap)).

Applying a function to an iterable with `starmap` and `pairwise` may be done with `map` (12 chars shorter):

* https://leetcode.com/problems/find-the-original-array-of-prefix-xor

```python
class Solution:
def findArray(self, p: List[int]) -> List[int]:
return starmap(xor,pairwise([0]+p))

class Solution:
def findArray(self, p: List[int]) -> List[int]:
return map(xor,p,[0]+p)
```

Very often you can replace `zip` with `map`, it evaluates iterables the same way:

* https://leetcode.com/problems/minimum-number-of-moves-to-seat-everyone[

```python
class Solution:
def minMovesToSeat(self, s: List[int], t: List[int]) -> int:
return sum(abs(a-b)for a,b in zip(*map(sorted,(s,t))))

class Solution:
def minMovesToSeat(self, s: List[int], t: List[int]) -> int:
return sum(map(abs,map(sub,*map(sorted,(s,t)))))
```

You can also replace `starmap` and `enumerate` with `map` and `count()` (7 characters shorter).

* https://leetcode.com/problems/count-number-of-bad-pairs

```python
class Solution:
def countBadPairs(self, a: List[int]) -> int:
return sum(x*(len(a)-x)for x in Counter(starmap(sub,enumerate(a))).values())//2

class Solution:
def countBadPairs(self, a: List[int]) -> int:
return sum(x*(len(a)-x)for x in Counter(map(sub,a,count())).values())//2

```

### Comb

You can write combination function (binomial) `n*(n-1)//2` as `comb(n,2)`, or replace `(n-1)` with `~-n` to cut parens.

* https://leetcode.com/problems/tuple-with-same-product

```python
class Solution:
def tupleSameProduct(self, a) -> int:
return sum(8*comb(n,2)for n in Counter(starmap(mul,combinations(a,2))).values())

class Solution:
def tupleSameProduct(self, a) -> int:
return sum(4*n*(n-1)for n in Counter(starmap(mul,combinations(a,2))).values())

class Solution:
def tupleSameProduct(self, a) -> int:
return sum(~-n*n*4for n in Counter(starmap(mul,combinations(a,2))).values())
```

### Numpy

You can use `numpy.convolve` for sliding windows, it's usually shorter than reduce or list comprehension:

* https://leetcode.com/problems/grumpy-bookstore-owner

```python
class Solution:
def maxSatisfied(self, c: List[int], g: List[int], m: int) -> int:
t,a=0,[*map(mul,c,g)];[t:=(t,w:=sum(a[i:i+m]))[w>t]for i in range(len(c)-m+1)]
return t+sum(c)-sum(a)

class Solution:
def maxSatisfied(self, c: List[int], g: List[int], m: int) -> int:
return max(__import__('numpy').convolve(a:=[*map(mul,c,g)],[1]*m))+sum(c)-sum(a)
```

### Ceil

You can replace `ceil(x/k)` with `-(-x//k)` (1 character shorter):

* https://leetcode.com/problems/maximal-score-after-applying-k-operations

```python
class Solution:
def maxKelements(self, a: List[int], k: int) -> int:
a.sort();return sum((x:=a.pop(),insort(a,ceil(x/3)))[0]for _ in range(k))

class Solution:
def maxKelements(self, a: List[int], k: int) -> int:
a.sort();return sum((x:=a.pop(),insort(a,-(-x//3)))[0]for _ in range(k))
```

## Tables

### Operators

These operators are available in a global namespace (Leetcode includes "operator" module by default).

Operation |Syntax |Function
----------------------------|-------------------|-----------------------------------
**Unary** | |
Negation (Arithmetic) |`- a` |`neg(a)`
Negation (Logical) |`not a` |`not_(a)`
Positive |`+ a` |`pos(a)`
Truth Test |`obj` |`truth(obj)`
Bitwise Inversion |`~ a` |`invert(a)`
**Binary** | |
Addition |`a + b` |`add(a, b)`
Concatenation |`seq1 + seq2` |`concat(seq1, seq2)`
Containment Test |`obj in seq` |`contains(seq, obj)`
Division |`a / b` |`truediv(a, b)`
Division |`a // b` |`floordiv(a, b)`
Bitwise And |`a & b` |`and_(a, b)`
Bitwise Exclusive Or |`a ^ b` |`xor(a, b)`
Bitwise Or |`a \| b` |`or_(a, b)`
Exponentiation |`a ** b` |`pow(a, b)`
Identity |`a is b` |`is_(a, b)`
Identity |`a is not b` |`is_not(a, b)`
Indexed Deletion |`del obj[k]` |`delitem(obj, k)`
Indexing |`obj[k]` |`getitem(obj, k)`
Left Shift |`a << b` |`lshift(a, b)`
Modulo |`a % b` |`mod(a, b)`
Multiplication |`a * b` |`mul(a, b)`
Matrix Multiplication |`a @ b` |`matmul(a, b)`
Right Shift |`a >> b` |`rshift(a, b)`
String Formatting |`s % obj` |`mod(s, obj)`
Subtraction |`a - b` |`sub(a, b)`
Ordering (Less Than) |`a < b` |`lt(a, b)`
Ordering (Less or Equal) |`a <= b` |`le(a, b)`
Equality |`a == b` |`eq(a, b)`
Difference (Not Equal) |`a != b` |`ne(a, b)`
Ordering (Greater or Equal) |`a >= b` |`ge(a, b)`
Ordering (Greater Than) |`a > b` |`gt(a, b)`
**Ternary** | |
Indexed Assignment |`obj[k] = v` |`setitem(obj, k, v)`
Slice Assignment |`seq[i:j] = values`|`setitem(seq, slice(i, j), values)`
Slice Deletion |`del seq[i:j]` |`delitem(seq, slice(i, j))`
Slicing |`seq[i:j]` |`getitem(seq, slice(i, j))`

The same naming goes for the member functions, but with underscores, e.g. `(1).__lt__`.

### Precedence

Knowing precedence helps to cut parens. For example, you can replace `(n-1)` with `~-n` (binary negation).

Precedence|Operators |Description |Associativity
----------|----------------------------------------------|-----------------------------------------------------------|-------------
1 |`()` |Parentheses |Left to right
2 |`x[i], x[i:j]` |Subscription, slicing |Left to right
3 |`await x` |Await expression |N/A
4 |`**` |Exponentiation |Right to left
5 |`+x, -x, ~x` |Positive, negative, bitwise NOT |Right to left
6 |`*, @, /, //, %` |Multiply (matrix), division, remainder |Left to right
7 |`+, –` |Addition and subtraction |Left to right
8 |`<<, >>` |Shifts |Left to right
9 |`&` |Bitwise AND |Left to right
10 |`^` |Bitwise XOR |Left to right
11 |`\|` |Bitwise OR |Left to right
12 |`in, not in, is, is not, <, <=, >, >=, !=, ==`|Comparisons, membership tests, identity tests |Left to Right
13 |`not x` |Boolean NOT |Right to left
14 |`and` |Boolean AND |Left to right
15 |`or` |Boolean OR |Left to right
16 |`if-else` |Conditional expression |Right to left
17 |`lambda` |Lambda expression |N/A
18 |`:=` |Assignment expression (walrus) |Right to left

### Itertools

See https://docs.python.org/3/library/itertools.html

#### Infinite operators

Iterator | Arguments | Results | Example
-----------| --------------- | ------------------------------------------------ | -------------------------------------
`count()` | [start[,step]] | start, start+step, start+2\*step, ... | `count(10)` → 10 11 12 13 14 ...
`cycle()` | p | p0, p1, … plast, p0, p1, ... | `cycle('ABCD')` → A B C D A B C D ...
`repeat()` | elem [,n] | elem, elem, elem, ... endlessly or up to n times | `repeat(10, 3)` → 10 10 10

#### Iterators terminating on the shortest input sequence

Iterator | Arguments | Results | Example
----------------------- | --------------------------- | ----------------------------------------------- | ----------------------------------------------------------
`accumulate()` | p [,func] | p0, p0+p1, p0+p1+p2, ... | `accumulate([1,2,3,4,5])` → 1 3 6 10 15
`batched()` | p, n | (p0, p1, ..., p_n-1), ... | `batched('ABCDEFG', n=3)` → ABC DEF G
`chain()` | p, q, ... | p0, p1, ... plast, q0, q1, ... | `chain('ABC', 'DEF')` → A B C D E F
`chain.from_iterable()` | iterable | p0, p1, ... plast, q0, q1, ... | `chain.from_iterable(['ABC', 'DEF'])` → A B C D E F
`compress()` | data, selectors | (d[0] if s[0]), (d[1] if s[1]), ... | `compress('ABCDEF', [1,0,1,0,1,1])` → A C E F
`dropwhile()` | predicate, seq | seq[n], seq[n+1], starting when predicate fails | `dropwhile(lambda x: x<5, [1,4,6,3,8])` → 6 3 8
`filterfalse()` | predicate, seq | elements of seq where predicate(elem) fails | `filterfalse(lambda x: x<5, [1,4,6,3,8])` → 6 8
`groupby()` | iterable[, key] | sub-iterators grouped by value of key(v) | `groupby(['A','B','DEF'], len)` → (1, A B) (3, DEF)
`islice()` | seq, [start,] stop [, step] | elements from seq[start:stop:step] | `islice('ABCDEFG', 2, None)` → C D E F G
`pairwise()` | iterable | (p[0], p[1]), (p[1], p[2]) | `pairwise('ABCDEFG')` → AB BC CD DE EF FG
`starmap()` | func, seq | func(\*seq[0]), func(\*seq[1]), ... | `starmap(pow, [(2,5), (3,2), (10,3)])` → 32 9 1000
`takewhile()` | predicate, seq | seq[0], seq[1], until predicate fails | `takewhile(lambda x: x<5, [1,4,6,3,8])` → 1 4
`tee()` | it, n | it1, it2, ... itn splits one iterator into n |
`zip_longest()` | p, q, ... | (p[0], q[0]), (p[1], q[1]), ... | `zip_longest('ABCD', 'xy', fillvalue='-')` → Ax By C- D-

#### Combinatoric iterators

Function | Arguments | Results
---------|-----------|---------
`product()` | p, q, ... [repeat=1] | cartesian product, equivalent to a nested for-loop
`permutations()` | p[, r] | r-length tuples, all possible orderings, no repeated elements
`combinations()` | p, r | r-length tuples, in sorted order, no repeated elements
`combinations_with_replacement()` | p, r | r-length tuples, in sorted order, with repeated elements

Examples | Results
-------------------------------------------|---------------------------------------------------
`product('ABCD', repeat=2)` | AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD
`permutations('ABCD', 2)` | AB AC AD BA BC BD CA CB CD DA DB DC
`combinations('ABCD', 2)` | AB AC AD BC BD CD
`combinations_with_replacement('ABCD', 2)` | AA AB AC AD BB BC BD CC CD DD

## Notes

* An expression like `x&(x-1)==0` is useful to check if unsigned `x` is power of 2 or 0 (Kernighan, rightmost bit).
* Unless the following token starts with e or E, you can remove the space following a number. E.g. `i==4 and j==4` becomes `i==4and j==4`.
* Instead of range(x), you can use the * operator on a list of anything, e.g. `[1]*8` can replace `range(8)` (unless you really need the counter value).
* Conditions like `if ii>=0<=ji>-1