Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/josesho/bootstrap_contrast
Python module to produce bootstrapped confidence intervals and effect sizes.
https://github.com/josesho/bootstrap_contrast
bootstrapping-statistics matplotlib numpy pandas python seaborn statistics
Last synced: 4 months ago
JSON representation
Python module to produce bootstrapped confidence intervals and effect sizes.
- Host: GitHub
- URL: https://github.com/josesho/bootstrap_contrast
- Owner: josesho
- License: mit
- Created: 2016-04-28T05:18:34.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2018-01-02T03:05:23.000Z (about 7 years ago)
- Last Synced: 2024-09-29T00:22:26.509Z (4 months ago)
- Topics: bootstrapping-statistics, matplotlib, numpy, pandas, python, seaborn, statistics
- Language: Jupyter Notebook
- Homepage:
- Size: 5.18 MB
- Stars: 4
- Watchers: 2
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# bootstrap-contrast [![Build Status](https://travis-ci.org/josesho/bootstrap_contrast.svg?branch=master)](https://travis-ci.org/josesho/bootstrap_contrast)
## THIS PACKAGE HAS BEEN DEPRECATED (JANUARY 2018)
Please use the [DABEST-python](https://github.com/ACCLAB/DABEST-python) package instead. __`bootstrap-contrast` will no longer be supported.__
## About
Python module to produced bootstrapped confidence intervals and effect sizes.
Python 3.6 is strongly recommended, although this has been tested with Python 2.7 and Python 3.5.
In addition, the following packages are also required: matplotlib (2.0.2), seaborn (0.8), numpy (1.13.1), scipy (0.19.1), and pandas (0.20.3). To obtain these package dependencies easily, it is highly recommended to download the Anaconda distribution of Python from [https://www.continuum.io/downloads](https://www.continuum.io/downloads).
## Installation
You can install this package via `pip` or `conda`. Thus, you can run either
```
pip install --upgrade bootstrap_contrast
```
or```
conda config --add channels conda-forge
conda install bootstrap_contrast
```## Usage
Please refer to the [tutorial](https://github.com/josesho/bootstrap_contrast/blob/master/bootstrap-contrast_tutorial.ipynb).