Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/josmangarsal/copositivity-detection-bundfuss-faces
Copositivity matrix detection using simplices, faces refinement vs Bundfuss bisection
https://github.com/josmangarsal/copositivity-detection-bundfuss-faces
copositivity dimacs simplex-refinement
Last synced: 29 days ago
JSON representation
Copositivity matrix detection using simplices, faces refinement vs Bundfuss bisection
- Host: GitHub
- URL: https://github.com/josmangarsal/copositivity-detection-bundfuss-faces
- Owner: josmangarsal
- Created: 2018-11-17T11:34:46.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2018-11-17T12:01:29.000Z (about 6 years ago)
- Last Synced: 2023-02-28T18:10:54.650Z (almost 2 years ago)
- Topics: copositivity, dimacs, simplex-refinement
- Language: C++
- Homepage:
- Size: 36.1 KB
- Stars: 0
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# CoPositivity detection
## Prerequisites:
### - C++17
### - Python3
With numpy and scipy for matrix null space and LP.### - Install Intel MKL library as a standalone package
1. Go to https://software.seek.intel.com/performance-libraries
2. Register
3. Download Intel MKL
4. tar zxvf l_mkl_2019.0.117.tgz
5. cd folder
6. ./install_GUI.sh
7. Customize installation to install just Intel Math Kernel Library for C/C++ with GNU C/C++ compiler support
8. cd ~/intel/mkl/bin$ && sh ./mklvars.sh intel64## How to compile:
- **make clean**: Clean build and exec.
- **make**: Compile
- **make total**: Clean, compile and run
- ***IMPORTANT***:
- Check your *Intel MKL* and *Python 3* path in the makefile.
- `.../intel/mkl/lib/intel64` must be in LD_LIBRARY_PATH (make total performs that).
## How to run:
Run `run -?` to see help.```
usage:
run optionswhere options are:
-n, --dimension Problem dimension (integer) [Required]
-M, --matrix Matrix file (string) [n!=3,5]
-t Dimacs t value (integer) [n!=3,5]
-D, --division Division method (string) ['facet',
'bundfuss', 'zbund'] [Required]
-?, -h, --help display usage information
```*Remainder:* Matrix dim 3 and dim 5 (Horn) is harcoded, run them using:
- `run -n 3 -D `
- `run -n 5 -D `Division methods:
- ***facet***: Facets and monotonicity (SARTECO18)
- ***bundfuss***: Bundfuss
- ***zbund***: Bundfuss and monotonicity