https://github.com/jparedesds/fluorescent-penetrant-inspection
Detection of liquid penetrant test with AI (Yolo11)
https://github.com/jparedesds/fluorescent-penetrant-inspection
detection-model fpi huggingface inspection liquid lpi model opencv penetrant penetration-testing pt test torch torchvison yolo11
Last synced: 5 months ago
JSON representation
Detection of liquid penetrant test with AI (Yolo11)
- Host: GitHub
- URL: https://github.com/jparedesds/fluorescent-penetrant-inspection
- Owner: jparedesDS
- License: mit
- Created: 2024-11-21T10:31:01.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2024-11-22T11:06:44.000Z (12 months ago)
- Last Synced: 2025-04-02T09:15:28.952Z (8 months ago)
- Topics: detection-model, fpi, huggingface, inspection, liquid, lpi, model, opencv, penetrant, penetration-testing, pt, test, torch, torchvison, yolo11
- Homepage: https://huggingface.co/jparedesDS/fluorescent-penetrant-inspection
- Size: 7.81 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Fluorescent penetrant inspection (FPI, DP, LPI, PT)
Detection of liquid penetrant test with AI (Yolo11)
### MODEL
- Yolo11l: https://huggingface.co/jparedesDS/liquid-penetrant-test-detection
#### Supported Labels
['defecto']
#### ALL my models YOLOv10 & YOLOv9
- Yolov9c: https://huggingface.co/jparedesDS/cs2-yolov9c
- Yolov10s: https://huggingface.co/jparedesDS/cs2-yolov10s
- Yolov10m: https://huggingface.co/jparedesDS/cs2-yolov10m
- Yolov10b: https://huggingface.co/jparedesDS/cs2-yolov10b
- Yolov10b: https://huggingface.co/jparedesDS/valorant-yolov10b
- Yolo11x: https://huggingface.co/jparedesDS/welding-defects-detection
#### How to use
```
from ultralytics import YOLO
# Load a pretrained YOLO model
model = YOLO(r'weights\yolo11l_LPI.pt')
# Run inference on 'image.png' with arguments
model.predict(
'image.png',
save=True,
device=0
)
```
#### Confusion matrix normalized

#### Labels

#### Results

#### Predict


```
YOLO11l summary (fused): 464 layers, 25,280,083 parameters, 0 gradients, 86.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 12/12 [00:05<00:00, 2.32it/s]
all 836 752 0.794 0.771 0.793 0.379
```
#### Others models...
https://huggingface.co/jparedesDS/welding-defects-detection