Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jpkli/p6
Declarative Machine Learning and Visual Analytics
https://github.com/jpkli/p6
Last synced: about 2 months ago
JSON representation
Declarative Machine Learning and Visual Analytics
- Host: GitHub
- URL: https://github.com/jpkli/p6
- Owner: jpkli
- Created: 2019-10-30T19:29:21.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2023-01-06T02:15:18.000Z (almost 2 years ago)
- Last Synced: 2024-08-03T17:13:16.239Z (5 months ago)
- Language: JavaScript
- Homepage:
- Size: 664 KB
- Stars: 18
- Watchers: 1
- Forks: 1
- Open Issues: 27
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-viz - P6 - P6 is a research project for developing a declarative language to specify visual analytics processes that integrate machine learning methods with interactive visualization for data analysis and exploration. P6 uses P4 for GPU accelerated data processing and rendering, and leverages Scikit-Learn and other Python libraries for supporting machine learning algorithms. ([↑](#contents) Declarative)
README
# P6: Declarative Specification for Interactive Machine Learning and Visual Analytics
P6 is a research project for developing a declarative language to specify visual analytics processes that integrate machine learning methods with interactive visualization for data analysis and exploration. P6 uses [P4](https://github.com/jpkli/p4) for GPU accelerated data processing and rendering, and leverages [Scikit-Learn](https://scikit-learn.org/stable/) and other Python libraries for supporting machine learning algorithms.
## Demo
Demos for using declarative specifications with clustering, dimension reduction, and regression here:
* [K-Means Clustering and PCA](http://stream.cs.ucdavis.edu:8888/#clustering)
* [RandomForest Regressor](http://stream.cs.ucdavis.edu:8888/#regression)
* [Hierarchical Clustering and Multiple Views](http://stream.cs.ucdavis.edu:8888/#multiview)
* [Brushing and Linking with Dimension Reductions](http://stream.cs.ucdavis.edu:8888/#triviewbrush)## Installation
To run P6, first install both the JavaScript and Python dependencies and libraries:
```
npm install
pip install -r python/requirements.txt
```## Development and Examples
For development and trying the example applications, use the following commands for starting the server and client
```
npm start
```__Or__ start server and client on two different terminals/consoles:
```
npm run server
npm run client
```The example applications can be accessed at http://localhost:8080/examples/
## Usage
```javascript
//config
let app = p6()
.data({url: 'data/babies.csv'}) // input data
.analyze({
// analyze the data using sklearn.decomposition.PCA and store the result in a new variable 'PC'
PC: {
module: 'decomposition',
algorithm: 'PCA',
n_components: 2,
features: ['BabyWeight', 'MotherWeight', 'MotherHeight', 'MotherWgtGain', 'MotherAge']
}
})app.layout({
container: "app", // id of the div
viewport: [800, 400]
})
.visualize({
chart: {
mark: 'circle', size: 8,
x: 'PC1', y: 'PC0',
color: 'clusters', opacity: 0.5,
}
})
```## API
P6 provides a JavaScript API with a declarative language for specifying operations in visual analytics processes, which include data processing, machine learning, visualization, interaction.
#### Data
```javascript
data({source, selection, preprocess, transform})
```
* __source__: source of the dataset, example: {url: './data/babies.csv}
* __select__: select data subset by rows, columns, or data types. Example: {select: {nrows: 10000, columns: ['BabyWeight', 'BabyGender']}}
* __nrows__ - number of rows
* __columns__ - specify which data columns
* __dtype__ - select `categorical` or `numerical` data
* __preprocess__: preprocess data by dtypes.
* Example for using one-hot encoding on categorical data: {preprocess: {categorical: 'OneHot'}}
* Example for dropping null values: {preprocess: {null: 'drop'}}
* Example for filling null values by columns: {preprocess: {null: {fill: {BabyWeight: 8}}}#### Machine Learning and Analytics
```javascript
analyze({algorithm, features, scaling, [parameters]})
```
* __algorithm__: supported algorithms and methods - [clustering](https://scikit-learn.org/stable/modules/clustering.html), [dimension reduction](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition), [manifold](https://scikit-learn.org/stable/modules/manifold.html)
* __features__: data fields as the input to the specified `algorithm`.
* __scaling__: use `StandardScaler`, `LabelEncoder` `minmax_scale`, or other [preprocessors](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing) for scaling the input data
* __[parameters]__: use the same name as the functions in Python libraries. As shown in the example shown above, `n_component` is directly passed to `sklearn.decomposition.PCA`. More parameters can be set in this way.#### Train model for classification and regression tasks
```javascript
model({module, method, trainingData, features, target, [parameters]})
```
* __module__: Python library and module containing the `method` for fitting the model. Example: `sklearn.linearmodel`.
* __method__: the function to be called for fitting the model. Example: `LinearRegression`.
* __trainingData__: data for training the model
* __features__: input features to the model
* __target__: the data field for prediction
* __[parameters]__: hyperparameters for the model### Visualization
To organize the views for visualization, the `layout` function can be used for configuring the views and layouts.#### View Layout
```javascript
layout({id, width, height, padding, [options]})
```To visualize data or analysis result, call `visualize' to transform data (optional), choose a visual mark, and specify the visual encoding for mapping data to visual marks.
#### Visual Encoding/Mapping
```javascript
visualize({transform, visualMark, [encoding]})
```## Publication
Jianping Kelvin Li and Kwan-Liu Ma. P6: A Declarative Language for Integrating Machine Learning in Visual Analytics. IEEE Transactions on Visualization and Computer Graphics (Proc: VAST), 2020## Acknowledgement
This research was sponsored in part by the U.S. National Science Foundation through grant NSF IIS-1528203 and U.S. Department of Energy through grant DE-SC0014917.