Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/jpmckinney/validictory

🎓 deprecated general purpose python data validator
https://github.com/jpmckinney/validictory

jsonschema python validation

Last synced: 4 days ago
JSON representation

🎓 deprecated general purpose python data validator

Awesome Lists containing this project

README

        

===========
validictory
===========

:warning: **:warning: As of 2018 this library is deprecated, please consider using jsonschema (https://pypi.python.org/pypi/jsonschema) instead.**

.. image:: https://travis-ci.org/jamesturk/validictory.svg?branch=master
:target: https://travis-ci.org/jamesturk/validictory

.. image:: https://coveralls.io/repos/jamesturk/validictory/badge.png?branch=master
:target: https://coveralls.io/r/jamesturk/validictory

.. image:: https://img.shields.io/pypi/v/validictory.svg
:target: https://pypi.python.org/pypi/validictory

.. image:: https://readthedocs.org/projects/validictory/badge/?version=latest
:target: https://readthedocs.org/projects/validictory/?badge=latest
:alt: Documentation Status

A general purpose Python data validator.

Schema format based on JSON Schema Proposal (http://json-schema.org)

Contains code derived from jsonschema, by Ian Lewis and Yusuke Muraoka.

Usage
=====

JSON documents and schema must first be loaded into a Python dictionary type
before it can be validated.

Parsing a simple JSON document::

>>> import validictory
>>>
>>> validictory.validate("something", {"type":"string"})

Parsing a more complex JSON document::

>>> import json
>>> import validictory
>>>
>>> data = json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]')
>>> schema = {
... "type":"array",
... "items":[
... {"type":"string"},
... {"type":"object",
... "properties":{
... "bar":{
... "items":[
... {"type":"string"},
... {"type":"any"},
... {"type":"number"},
... {"type":"integer"}
... ]
... }
... }
... }
... ]
... }
>>> validictory.validate(data,schema)

Catch ValueErrors to handle validation issues::

>>> import validictory
>>>
>>> try:
... validictory.validate("something", {"type":"string","minLength":15})
... except ValueError, error:
... print(error)
...
Length of value 'something' for field '_data' must be greater than or equal to 15

You can read more in the official documentation at `Read the Docs `_.