Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jrbourbeau/pyunfold
Iterative unfolding for Python
https://github.com/jrbourbeau/pyunfold
data-analysis deconvolution inverse-problems python regularization statistics unfolding
Last synced: 2 months ago
JSON representation
Iterative unfolding for Python
- Host: GitHub
- URL: https://github.com/jrbourbeau/pyunfold
- Owner: jrbourbeau
- License: mit
- Created: 2018-03-27T16:25:43.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2020-10-17T19:41:22.000Z (about 4 years ago)
- Last Synced: 2024-11-02T04:12:02.529Z (2 months ago)
- Topics: data-analysis, deconvolution, inverse-problems, python, regularization, statistics, unfolding
- Language: Python
- Homepage: https://jrbourbeau.github.io/pyunfold/
- Size: 6.82 MB
- Stars: 26
- Watchers: 5
- Forks: 13
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
# PyUnfold
[![Build Status](https://travis-ci.org/jrbourbeau/pyunfold.svg?branch=master)](https://travis-ci.org/jrbourbeau/pyunfold)
[![Build status](https://ci.appveyor.com/api/projects/status/wphmmposuctye5ye/branch/master?svg=true)](https://ci.appveyor.com/project/jrbourbeau/pyunfold/branch/master)
[![codecov](https://codecov.io/gh/jrbourbeau/pyunfold/branch/master/graph/badge.svg)](https://codecov.io/gh/jrbourbeau/pyunfold)
[![pypi version](https://img.shields.io/pypi/v/pyunfold.svg 'pypi version')](https://pypi.org/project/PyUnfold/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pyunfold.svg)](https://pypi.org/project/PyUnfold/)
[![DOI](http://joss.theoj.org/papers/10.21105/joss.00741/status.svg)](https://doi.org/10.21105/joss.00741)
[![license](https://img.shields.io/pypi/l/pyunfold.svg 'license')](https://github.com/jrbourbeau/pyunfold/blob/master/LICENSE)PyUnfold is a Python package for implementing iterative unfolding.
## Documentation
The documentation for PyUnfold can be found at https://jrbourbeau.github.io/pyunfold/
## Installation
PyUnfold can be installed using `pip`
```
pip install pyunfold
```or `conda`
```
conda install -c conda-forge pyunfold
```For more information see the [installation instructions](https://jrbourbeau.github.io/pyunfold/installation.html) in the [documentation](https://jrbourbeau.github.io/pyunfold/).
## Citation
If you find PyUnfold useful in your work, please consider [citing it](https://jrbourbeau.github.io/pyunfold/citing.html).
## License
[MIT License](LICENSE)
Copyright (c) 2018 James Bourbeau and Zigfried Hampel-Arias