Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/js05212/BayesianDeepLearning-Survey
Bayesian Deep Learning: A Survey
https://github.com/js05212/BayesianDeepLearning-Survey
arxiv bayesian bayesian-deep-learning bdl deep-learning machine-learning neural-networks survey variational-autoencoders
Last synced: 2 months ago
JSON representation
Bayesian Deep Learning: A Survey
- Host: GitHub
- URL: https://github.com/js05212/BayesianDeepLearning-Survey
- Owner: js05212
- Created: 2019-07-17T00:51:13.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-10-23T20:44:26.000Z (2 months ago)
- Last Synced: 2024-10-24T08:34:12.478Z (2 months ago)
- Topics: arxiv, bayesian, bayesian-deep-learning, bdl, deep-learning, machine-learning, neural-networks, survey, variational-autoencoders
- Homepage:
- Size: 442 KB
- Stars: 504
- Watchers: 29
- Forks: 62
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-artificial-intelligence-research - Bayesian Deep Learning
README
# An Updating Survey for Bayesian Deep Learning (BDL)
This is an updating survey for Bayesian Deep Learning (BDL), an constantly updated and extended version for the manuscript, '[A Survey on Bayesian Deep Learning](http://wanghao.in/paper/CSUR20_BDL.pdf)', published in [**ACM Computing Surveys**](https://dl.acm.org/doi/10.1145/3409383) 2020.
Bayesian deep learning is a powerful framework for designing models across a wide range of applications. See our [**Nature Medicine** paper](https://www.nature.com/articles/s41591-021-01273-1.pdf) for a possible application on healthcare.
## Contents
* [Survey](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#survey)
* [BDL and Recommender Systems](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-recommender-systems)
* [BDL and Domain Adaptation (and Domain Generalization, Meta Learning, etc.)](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-domain-adaptation-and-domain-generalization-meta-learning-etc)
* [BDL and Healthcare](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-healthcare)
* [BDL and Natural Language Processing (NLP)](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-nlp)
* [BDL and Computer Vision (CV)](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-computer-vision)
* [BDL and Control/Planning](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-controlplanning)
* [BDL and Graphs (Link Prediction, Graph Neural Networks, Knowledge Graphs, etc.)](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-graphs-link-prediction-graph-neural-networks-knowledge-graphs-etc)
* [BDL and Topic Modeling](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-topic-modeling)
* [BDL and Speech Recognition/Synthesis](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-speech-recognitionsynthesis)
* [BDL and Forecasting (Time Series Analysis)](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-forecasting-time-series-analysis)
* [BDL and Distributed/Federated Learning](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-distributedfederated-learning)
* [BDL and Continual/Life-Long Learning](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-continuallife-long-learning)
* [BDL and AI4Science](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-ai4science)
* [BDL as a Framework (Miscellaneous)](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-as-a-framework-miscellaneous)
* [Bayesian/Probabilistic Neural Networks as Building Blocks of BDL](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bayesianprobabilistic-neural-networks-as-building-blocks-of-bdl)## Survey
A Survey on Bayesian Deep Learning
by Wang et al., ACM Computing Surveys (CSUR) 2020
[[PDF]](http://wanghao.in/paper/CSUR20_BDL.pdf) [[Blog]](http://wanghao.in/BDL.html) [[BDL Framework in 2016]](http://wanghao.in/paper/TKDE16_BDL.pdf)
## BDL and Recommender Systems
Collaborative Deep Learning for Recommender Systems
by Wang et al., KDD 2015
[[PDF]](http://wanghao.in/paper/KDD15_CDL.pdf) [[Project Page]](http://wanghao.in/CDL.htm) [[2014 Arxiv Version]](https://arxiv.org/abs/1409.2944) [[Code]](https://github.com/js05212/CDL) [[MXNet Code]](https://github.com/js05212/MXNet-for-CDL) [[TensorFlow Code]](https://github.com/js05212/CollaborativeDeepLearning-TensorFlow) [[Dataset A]](https://github.com/js05212/citeulike-a) [[Dataset B]](https://github.com/js05212/citeulike-t) [[Jupyter Notebook]](https://github.com/js05212/MXNet-for-CDL/blob/master/collaborative-dl.ipynb) [[Slides]](http://wanghao.in/slides/CDL_slides.pdf) [[Slides (Long)]](http://wanghao.in/slides/CDL_slides_long.pdf)Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks
by Wang et al., NIPS 2016
[[PDF]](https://arxiv.org/abs/1611.00454)Collaborative Knowledge Base Embedding for Recommender Systems
by Zhang et al., KDD 2016
[[PDF]](https://dl.acm.org/citation.cfm?id=2939673)Collaborative Deep Ranking: A Hybrid Pair-Wise Recommendation Algorithm with Implicit Feedback
by Ying et al., PAKDD 2016
[[PDF]](https://link.springer.com/chapter/10.1007/978-3-319-31750-2_44)Collaborative Variational Autoencoder for Recommender Systems
by Li et al., KDD 2017
[[PDF]](https://www.kdd.org/kdd2017/papers/view/collaborative-variational-autoencoder-for-recommender-systems)Variational Autoencoders for Collaborative Filtering
by Liang et al., WWW 2018
[[PDF]](https://arxiv.org/abs/1802.05814)Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation
by Ma et al., KDD 2020
[[PDF]](https://dl.acm.org/doi/pdf/10.1145/3394486.3403147)## BDL and Domain Adaptation (and Domain Generalization, Meta Learning, etc.)
Probabilistic Model-Agnostic Meta-Learning
by Finn et al., NIPS 2018
[[PDF]](https://papers.nips.cc/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf)Bayesian Model-Agnostic Meta-Learning
by Yoon et al., NIPS 2018
[[PDF]](https://arxiv.org/pdf/1806.03836.pdf)Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
by Grant et al., ICLR 2018
[[PDF]](https://arxiv.org/abs/1801.08930)Reconciling Meta-Learning and Continual Learning with Online Mixtures of Tasks
by Jerfal et al., NIPS 2019
[[PDF]](https://arxiv.org/abs/1812.06080)Meta-Learning Probabilistic Inference For Prediction
by Gordon et al., ICLR 2019
[[PDF]](https://arxiv.org/abs/1805.09921)Learning to Learn with Variational Information Bottleneck for Domain Generalization
by Du et al., ECCV 2020
[[PDF]](https://arxiv.org/pdf/2007.07645.pdf)Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
by Patacchiola et al., NIPS 2020
[[PDF]](https://arxiv.org/pdf/1910.05199.pdf)Continuously Indexed Domain Adaptation
by Wang et al., ICML 2020
[[PDF]](http://wanghao.in/paper/ICML20_CIDA.pdf)A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
by Xiao et al., ICML 2021
[[PDF]](https://arxiv.org/pdf/2105.04030.pdf)Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain Adaptation
by Xu et al., ICLR 2023
[[PDF]](http://wanghao.in/paper/ICLR23_VDI.pdf)## BDL and Healthcare
Electronic Health Record Analysis via Deep Poisson Factor Models
by Henao et al., JMLR 2016
[[PDF]](http://www.jmlr.org/papers/volume17/15-429/15-429.pdf)Structured Inference Networks for Nonlinear State Space Models
by Krishnan et al., AAAI 2017
[[PDF]](https://arxiv.org/pdf/1609.09869.pdf)Causal Effect Inference with Deep Latent-Variable Models
by Louizos et al., NIPS 2017
[[PDF]](https://arxiv.org/pdf/1705.08821.pdf)Black Box FDR
by Tansey et al., ICML 2018
[[PDF]](https://arxiv.org/abs/1806.03143)Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
by Wang et al., AAAI 2019
[[PDF]](https://arxiv.org/pdf/1902.02037)Sampling-free Uncertainty Estimation in Gated Recurrent Units with Applications to Normative Modeling in Neuroimaging
by Hwang et al., UAI 2019
[[PDF]](http://auai.org/uai2019/proceedings/papers/296.pdf)Neural Jump Stochastic Differential Equations
by Jia et al., NIPS 2019
[[PDF]](https://arxiv.org/pdf/1905.10403.pdf)Towards Interpretable Clinical Diagnosis with Bayesian Network Ensembles Stacked on Entity-Aware CNNs
by Chen et al., ACL 2020
[[PDF]](https://www.aclweb.org/anthology/2020.acl-main.286.pdf)Continuously Indexed Domain Adaptation
by Wang et al., ICML 2020
[[PDF]](http://wanghao.in/paper/ICML20_CIDA.pdf) [Cross Referenced in [BDL and Domain Adaptation](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-domain-adaptation-and-domain-generalization-meta-learning-etc)]Assessment of medication self-administration using artificial intelligence
by Zhao et al., Nature Medicine 2021
[[PDF]](https://www.nature.com/articles/s41591-021-01273-1.pdf)Neural Pharmacodynamic State Space Modeling
by Hussain et al., ICML 2021
[[PDF]](https://arxiv.org/pdf/2102.11218.pdf)Self-Interpretable Time Series Prediction with Counterfactual Explanations
by Yan et al., ICML 2023
[[PDF]](http://wanghao.in/paper/ICML23_CounTS.pdf) [Cross Referenced in [BDL and Forecasting (Time Series Analysis)](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-forecasting-time-series-analysis)]## BDL and NLP
Sequence to Better Sequence: Continuous Revision of Combinatorial Structures
by Mueller et al., ICML 2017
[[PDF]](http://proceedings.mlr.press/v70/mueller17a.html)QuaSE: Sequence Editing under Quantifiable Guidance
by Liao et al., EMNLP 2018
[[PDF]](https://arxiv.org/pdf/1804.07007.pdf)Dispersed Exponential Family Mixture VAEs for Interpretable Text Generation
by Shi et al., ICML 2020
[[PDF]](https://proceedings.icml.cc/static/paper_files/icml/2020/3242-Paper.pdf)Towards Interpretable Clinical Diagnosis with Bayesian Network Ensembles Stacked on Entity-Aware CNNs
by Chen et al., ACL 2020
[[PDF]](https://www.aclweb.org/anthology/2020.acl-main.286.pdf) [Cross Referenced in [BDL and Healthcare](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-healthcare)]What You Say and How You Say it: Joint Modeling of Topics and Discourse in Microblog Conversations
by Zeng et al., ACL 2020
[[PDF]](https://aclanthology.org/Q19-1017.pdf)Latent Diffusion Energy-Based Model for Interpretable Text Modeling
by Yu et al., ICML 2022
[[PDF]](https://arxiv.org/abs/2206.05895)Diffusion-LM Improves Controllable Text Generation
by Li et al., NeurIPS 2022
[[PDF]](https://proceedings.neurips.cc/paper_files/paper/2022/file/1be5bc25d50895ee656b8c2d9eb89d6a-Paper-Conference.pdf)Tractable Control for Autoregressive Language Generation
by Zhang et al., ICML 2023
[[PDF]](https://arxiv.org/pdf/2304.07438.pdf)## BDL and Computer Vision
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
by Eslami et al., NIPS 2016
[[PDF]](https://arxiv.org/abs/1603.08575)Efficient Inference in Occlusion-aware Generative Models of Images
by Huang et al., ICLR 2016
[[PDF]](https://arxiv.org/abs/1511.06362)Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
by Kosiorek et al., NIPS 2018
[[PDF]](https://arxiv.org/abs/1806.01794)Gaussian Process Prior Variational Autoencoders
by Casale et al., NIPS 2018
[[PDF]](https://arxiv.org/pdf/1810.11738.pdf)Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks
by Crawford et al., AAAI 2019
[[PDF]](https://www.aaai.org/ojs/index.php/AAAI/article/view/4216)Faster Attend-Infer-Repeat with Tractable Probabilistic Models
by Stelzner et al., ICML 2019
[[PDF]](http://proceedings.mlr.press/v97/stelzner19a.html)Asynchronous Temporal Fields for Action Recognition
by Sigurdsson et al., CVPR 2017
[[PDF]](https://arxiv.org/pdf/1612.06371.pdf)Generalizing Eye Tracking with Bayesian Adversarial Learning
by Wang et al., CVPR 2019
[[PDF]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Generalizing_Eye_Tracking_With_Bayesian_Adversarial_Learning_CVPR_2019_paper.pdf)Sequential Neural Processes
by Singh et al., NIPS 2019
[[PDF]](http://papers.nips.cc/paper/9214-sequential-neural-processes.pdf)SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition
by Lin et al., ICLR 2020
[[PDF]](https://arxiv.org/pdf/2001.02407.pdf)Being Bayesian about Categorical Probability
by Joo et al., ICML 2020
[[PDF]](https://proceedings.icml.cc/static/paper_files/icml/2020/3560-Paper.pdf)NVAE: A Deep Hierarchical Variational Autoencoder
by Vahdat et al., NIPS 2020
[[PDF]](https://arxiv.org/abs/2007.03898)
Learning Latent Space Energy-Based Prior Model
by Pang et al., NIPS 2020
[[PDF]](https://arxiv.org/pdf/2006.08205.pdf)
Generative Neurosymbolic Machines
by Jiang et al., NIPS 2020
[[PDF]](https://arxiv.org/pdf/2010.12152.pdf)
Denoising Diffusion Probabilistic Models
by Ho et al., NIPS 2020
[[PDF]](https://arxiv.org/pdf/2006.11239.pdf)
A Causal View of Compositional Zero-shot Recognition
by Atzmon et al., NIPS 2020
[[PDF]](https://arxiv.org/pdf/2006.14610.pdf)Counterfactuals Uncover the Modular Structure of Deep Generative Models
by Besserve et al., ICLR 2020
[[PDF]](https://openreview.net/pdf?id=SJxDDpEKvH)ROOTS: Object-Centric Representation and Rendering of 3D Scenes
by Chen et al., JMLR 2021
[[PDF]](https://jmlr.csail.mit.edu/papers/volume22/20-1176/20-1176.pdf)
Improved Denoising Diffusion Probabilistic Models
by Nichol et al., ICML 2021
[[PDF]](https://arxiv.org/pdf/2102.09672.pdf)
Generative Interventions for Causal Learning.
by Mao et al., CVPR 2021
[[PDF]](http://wanghao.in/paper/CVPR21_GenInt.pdf)Adversarial Attacks are Reversible with Natural Supervision
by Mao et al., ICCV 2021
[[PDF]](http://www.wanghao.in/paper/ICCV21_ReverseAttack.pdf)Counterfactual Zero-Shot and Open-Set Visual Recognition
by Yue et al., CVPR 2021
[[PDF]](https://arxiv.org/pdf/2103.00887.pdf)ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
by Choi et al., ICCV 2021
[[PDF]](https://arxiv.org/pdf/2108.02938.pdf)Diffusion Models Beat GANs on Image Synthesis
by Dhariwal et al., NIPS 2021
[[PDF]](https://arxiv.org/pdf/2105.05233.pdf)Relational Learning with Variational Bayes
by Liu, ICLR 2022
[[PDF]](https://openreview.net/pdf?id=Az-7gJc6lpr)High-Resolution Image Synthesis with Latent Diffusion Models
by Rombach et al., CVPR 2022
[[PDF]](https://arxiv.org/abs/2112.10752)GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
by Nichol et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/nichol22a.html)Diffusion Models for Adversarial Purification
by Nie et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/nie22a.html)A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion
by Lyu et al., ICLR 2022
[[PDF]](https://iclr.cc/virtual/2022/poster/7026)Label-Efficient Semantic Segmentation with Diffusion Models
by Baranchuk et al., ICLR 2022
[[PDF]](https://iclr.cc/virtual/2022/poster/6569)Learning Fast Samplers for Diffusion Models by Differentiating Through Sample Quality
by Watson et al., ICLR 2022
[[PDF]](https://openreview.net/pdf?id=VFBjuF8HEp)Flexible Diffusion Modeling of Long Videos
by Harvey et al., NIPS 2022
[[PDF]](https://arxiv.org/pdf/2205.11495.pdf)ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model
by Gautam et al., NIPS 2022
[[PDF]](https://proceedings.neurips.cc/paper_files/paper/2022/file/722f3f9298a961d2639eadd3f14a2816-Paper-Conference.pdf)Causal Transportability for Visual Recognition
by Mao et al., CVPR 2022
[[PDF]](http://wanghao.in/paper/CVPR22_CausalTrans.pdf)Posterior Matching for Arbitrary Conditioning
by Strauss et al., NIPS 2022
[[PDF]](https://openreview.net/pdf?id=EFnI8Qc--jE)On the Relationship between Variational Inference and Auto-Associative Memory
by Annabi et al., NIPS 2022
[[PDF]](https://openreview.net/pdf?id=uCBx_6Hc7cu)Robust Perception through Equivariance
by Mao et al., ICML 2023
[[PDF]](http://wanghao.in/paper/ICML23_RobustEquivariance.pdf)Object-Centric Slot Diffusion
by Jiang et al. NeurIPS 2023
[[PDF]](https://arxiv.org/abs/2303.10834)PreDiff: Precipitation Nowcasting with Latent Diffusion Models
by Gao et al., NeurIPS 2023
[[PDF]](https://arxiv.org/abs/2307.10422)Diffusion Posterior Sampling for Linear Inverse Problem Solving: A Filtering Perspective
by Dou et al., ICLR 2024
[[PDF]](https://openreview.net/forum?id=tplXNcHZs1)Probabilistic Conceptual Explainers: Towards Trustworthy Conceptual Explanations for Vision Foundation Models
by Wang et al., ICML 2024
[[PDF]](http://wanghao.in/paper/ICML24_PACE.pdf)## BDL and Control/Planning
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
by Watter et al., NIPS 2015
[[PDF]](https://arxiv.org/abs/1506.07365)Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
by Karl et al., ICLR 2017
[[PDF]](https://arxiv.org/pdf/1605.06432.pdf)Probabilistic Recurrent State-Space Models
by Doerr et al., ICML 2018
[[PDF]](http://proceedings.mlr.press/v80/doerr18a/doerr18a.pdf)Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
by Chua et al., NIPS 2018
[[PDF]](https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf)Robust Locally-Linear Controllable Embedding
by Banijamali et al., AISTATS 2018
[[PDF]](http://proceedings.mlr.press/v84/banijamali18a/banijamali18a.pdf)Learning Latent Dynamics for Planning from Pixels
by Hafner et al., ICML 2019
[[PDF]](https://arxiv.org/pdf/1811.04551.pdf)Planning with Diffusion for Flexible Behavior Synthesis
by Janner et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/janner22a.html)A Hierarchical Bayesian Approach to Inverse Reinforcement Learning with Symbolic Reward Machines
by Zhou et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/zhou22b/zhou22b.pdf)## BDL and Graphs (Link Prediction, Graph Neural Networks, Knowledge Graphs, etc.)
Relational Deep Learning: A Deep Latent Variable Model for Link Prediction
by Wang et al., AAAI 2017
[[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14346/14463)Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs
by Trivedi et al., ICML 2017
[[PDF]](https://arxiv.org/pdf/1705.05742.pdf)Graphite: Iterative Generative Modeling of Graphs
by Grover et al., ICML 2019
[[PDF]](https://arxiv.org/pdf/1803.10459.pdf)Relational Variational Autoencoder for Link Prediction with Multimedia Data
by Li et al., ACM MM 2017
[[PDF]](https://dl.acm.org/citation.cfm?id=3126774)Stochastic Blockmodels meet Graph Neural Networks
by Mehta et al., ICML 2019
[[PDF]](https://arxiv.org/pdf/1905.05738.pdf)Scalable Deep Generative Modeling for Sparse Graphs
by Dai et al., ICML 2020
[[PDF]](https://arxiv.org/pdf/2006.15502.pdf)PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
by Vu et al., NIPS 2020
[[PDF]](https://arxiv.org/pdf/2010.05788.pdf)Dirichlet Graph Variational Autoencoder
by Li et al., NIPS 2020
[[PDF]](https://arxiv.org/pdf/2010.04408.pdf)Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs
by Ren et al., NIPS 2020
[[PDF]](https://arxiv.org/pdf/2010.11465.pdf)GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation
by Xu et al., ICLR 2022
[[PDF]](https://arxiv.org/pdf/2203.02923.pdf)Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations
by Jo et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/jo22a.html)Equivariant Diffusion for Molecule Generation in 3D
by Hoogeboom et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/hoogeboom22a.html)LIMO: Latent Inceptionism for Targeted Molecule Generation
by Eckmann et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/eckmann22a/eckmann22a.pdf)3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design
by Huang et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/huang22g/huang22g.pdf)Crystal Diffusion Variational Autoencoder for Periodic Material Generation
by Xie et al., ICLR 2022
[[PDF]](https://openreview.net/pdf?id=03RLpj-tc_)OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks
by Lin et al., CVPR 2022
[[PDF]](http://wanghao.in/paper/CVPR22_OrphicX.pdf)## BDL and Topic Modeling
Relational Stacked Denoising Autoencoder for Tag Recommendation
by Wang et al., AAAI 2015
[[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/download/9350/9980)Scalable Deep Poisson Factor Analysis for Topic Modeling
by Gan et al., ICML 2015
[[PDF]](http://proceedings.mlr.press/v37/gan15.html)Deep Latent Dirichlet Allocation with Topic-layer-adaptive Stochastic Gradient Riemannian MCMC
by Cong et al., ICML 2017
[[PDF]](https://dl.acm.org/citation.cfm?id=3305471)Deep Unfolding for Topic Models
by Chien et al., TPAMI 2017
[[PDF]](https://ieeexplore.ieee.org/abstract/document/7869412/)Neural Relational Topic Models for Scientific Article Analysis
by Bai et al., CIKM 2018
[[PDF]](https://dl.acm.org/citation.cfm?id=3271696)Dirichlet Belief Networks for Topic Structure Learning
by Zhao et al., NIPS 2018
[[PDF]](http://papers.nips.cc/paper/8020-dirichlet-belief-networks-for-topic-structure-learning)Deep Relational Topic Modeling via Graph Poisson Gamma Belief Network
by Wang et al., NIPS 2020
[[PDF]](https://proceedings.neurips.cc//paper/2020/hash/05ee45de8d877c3949760a94fa691533-Abstract.html)Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network
by Duan et al., ICML 2021
[[PDF]](http://proceedings.mlr.press/v139/duan21b/duan21b.pdf)Poisson-Randomised DirBN: Large Mutation is Needed in Dirichlet Belief Networks
by Fan et al., ICML 2021
[[PDF]](http://proceedings.mlr.press/v139/fan21a/fan21a.pdf)Torsional Diffusion for Molecular Conformer Generation
by Jing et al., NIPS 2022
[[PDF]](https://openreview.net/pdf?id=w6fj2r62r_H)Knowledge-Aware Bayesian Deep Topic Model
by Wang et al., NIPS 2022
[[PDF]](https://openreview.net/forum?id=N2AGw9s-wvX)## BDL and Speech Recognition/Synthesis
Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data
by Hsu et al., NIPS 2017
[[PDF]](https://arxiv.org/pdf/1709.07902.pdf)Scalable Factorized Hierarchical Variational Autoencoder Training
by Hsu et al., Interspeech 2018
[[PDF]](https://arxiv.org/pdf/1804.03201.pdf)Hierarchical Generative Modeling for Controllable Speech Synthesis
by Hsu et al., ICLR 2019
[[PDF]](https://arxiv.org/pdf/1810.07217.pdf)Recurrent Poisson Process Unit for Speech Recognition
by Huang et al., AAAI 2019
[[PDF]](https://pdfs.semanticscholar.org/4970/fa3189cd9a9c817ba72082e2f3d5fc9a7df1.pdf)Deep Graph Random Process for Relational-thinking-based Speech Recognition
by Huang et al., ICML 2020
[[PDF]](http://wanghao.in/paper/ICML20_DGP.pdf)DiffWave: A Versatile Diffusion Model for Audio Synthesis
by Kong et al., ICLR 2021
[[PDF]](https://arxiv.org/abs/2009.09761)WaveGrad: Estimating Gradients for Waveform Generation
by Chen et al., ICLR 2021
[[PDF]](https://arxiv.org/pdf/2009.00713.pdf)Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
by Popov et al., ICML 2021
[[PDF]](https://arxiv.org/pdf/2105.06337.pdf)STRODE: Stochastic Boundary Ordinary Differential Equation
by Huang et al., ICML 2021
[[PDF]](http://www.wanghao.in/paper/ICML21_STRODE.pdf)Guided-TTS: A Diffusion Model for Text-to-Speech via Classifier Guidance
by Kim et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/kim22d.html)Diffusion-Based Voice Conversion with Fast Maximum Likelihood Sampling Scheme
by Popov et al., ICLR 2022
[[PDF]](https://openreview.net/forum?id=8c50f-DoWAu)BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis
by Lam et al., ICLR 2022
[[PDF]](https://iclr.cc/virtual/2022/poster/6010)Unsupervised Mismatch Localization in Cross-Modal Sequential Data with Application to Mispronunciations Localization
by Wei et al., TMLR 2022
[[PDF]](http://wanghao.in/paper/TMLR22_ML-VAE.pdf)## BDL and Forecasting (Time Series Analysis)
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
by Salinas et al., 2017
[[PDF]](https://arxiv.org/pdf/1704.04110.pdf)Deep State Space Models for Time Series Forecasting
by Rangapuram et al., NIPS 2018
[[PDF]](https://papers.nips.cc/paper/8004-deep-state-space-models-for-time-series-forecasting.pdf)Deep Factors for Forecasting
by Wang et al., ICML 2019
[[PDF]](https://arxiv.org/pdf/1905.12417.pdf)Probabilistic Forecasting with Spline Quantile Function RNNs
by Gasthaus et al., AISTATS 2019
[[PDF]](http://proceedings.mlr.press/v89/gasthaus19a/gasthaus19a.pdf)Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
by Dang-Nhu et al., ICML 2020
[[PDF]](https://proceedings.icml.cc/static/paper_files/icml/2020/526-Paper.pdf)Neural Jump Stochastic Differential Equations
by Jia et al., NIPS 2019
[[PDF]](https://arxiv.org/pdf/1905.10403.pdf)Segmenting Hybrid Trajectories using Latent ODEs
by Shi et al., ICML 2021
[[PDF]](https://arxiv.org/pdf/2105.03835.pdf)RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting
by Pal et al., ICML 2021
[[PDF]](http://proceedings.mlr.press/v139/pal21b/pal21b.pdf)End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time Series
by Rangapuram et al., ICML 2021
[[PDF]](http://proceedings.mlr.press/v139/rangapuram21a/rangapuram21a.pdf)Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting
by Rasul et al., ICML 2021
[[PDF]](http://proceedings.mlr.press/v139/rasul21a/rasul21a.pdf)Deep Explicit Duration Switching Models for Time Series
by Ansari et al., NIPS 2021
[[PDF]](https://arxiv.org/pdf/2110.13878.pdf)Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting
by Rasul et al., ICML 2021
[[PDF]](https://arxiv.org/pdf/2101.12072.pdf)CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation
by Tashiro et al., NIPS 2021
[[PDF]](https://arxiv.org/pdf/2107.03502.pdf)TACTiS: Transformer-Attentional Copulas for Time Series
by Drouin et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/drouin22a/drouin22a.pdf)Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
by Kramer et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/kramer22a/kramer22a.pdf)Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection
by Chen et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/chen22x.html)Vector Quantized Time Series Generation with a Bidirectional Prior Model
by Lee at al., AISTATS 2023
[[PDF]](https://arxiv.org/pdf/2303.04743.pdf)Self-Interpretable Time Series Prediction with Counterfactual Explanations
by Yan et al., ICML 2023
[[PDF]](http://wanghao.in/paper/ICML23_CounTS.pdf) [Cross Referenced in [BDL and Healthcare](https://github.com/js05212/BayesianDeepLearning-Survey/blob/master/README.md#bdl-and-healthcare)]## BDL and Distributed/Federated Learning
Stochastic Expectation Propagation
by Li et al., NIPS 2015
[[PDF]](https://papers.nips.cc/paper/2015/file/f3bd5ad57c8389a8a1a541a76be463bf-Paper.pdf)## BDL and AI4Science
Dirichlet Flow Matching with Applications to DNA Sequence Design
by Stark et al., ICML 2024
[[PDF]](https://arxiv.org/pdf/2402.05841)Particle Guidance: non-I.I.D. Diverse Sampling with Diffusion Models
by Corso et al., ICLR 2024
[[PDF]](https://openreview.net/pdf?id=KqbCvIFBY7)## BDL and Continual/Life-Long Learning
Continual Learning with Deep Generative Replay
by Shin et al., NIPS 2017
[[PDF]](https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf)Continual Unsupervised Representation Learning
by Rao et al., NIPS 2019
[[PDF]](https://arxiv.org/pdf/1910.14481.pdf)Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies
by Achille et al., NIPS 2018
[[PDF]](https://arxiv.org/pdf/1808.06508.pdf)Learning Latent Representations Across Multiple Data Domains Using Lifelong VAEGAN
by Ye et al., ECCV 2020
[[PDF]](https://dl.acm.org/doi/abs/10.1007/978-3-030-58565-5_46)A Neural Dirichlet Process Mixture Model for Task-Free Continual Learning
by Lee et al., ICLR 2020
[[PDF]](https://arxiv.org/abs/2001.00689)## BDL as a Framework (Miscellaneous)
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
by Wang et al., TKDE 2016
[[PDF]](https://arxiv.org/abs/1608.06884)Composing Graphical Models with Neural Networks for Structured Representations and Fast Inference
by Johnson et al., NIPS 2016
[[PDF]](https://arxiv.org/abs/1603.06277)Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations
by Xu et al., ICLR 2024
[[PDF]](http://wanghao.in/paper/ICLR24_ECBM.pdf)## Bayesian/Probabilistic Neural Networks as Building Blocks of BDL
Learning Stochastic Feedforward Networks
by Neal et al., Technical Report 1990
[[PDF]](https://www.cs.toronto.edu/~hinton/absps/sff.pdf)A Practical Bayesian Framework for Backprop Networks
by MacKay et al., Neural Computation 1992
[[PDF]](https://pdfs.semanticscholar.org/b0f2/433c088591d265891231f1c22424047f1bc1.pdf)Keeping Neural Networks Simple by Minimizing the Description Length of the Weights
by Hinton et al., COLT 1993
[[PDF]](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.3435)Bayesian Learning via Stochastic Gradient Langevin Dynamics
by Welling et al., ICML 2011
[[PDF]](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.3813&rep=rep1&type=pdf)Practical Variational Inference for Neural Networks
by Alex Graves, NIPS 2011
[[PDF]](https://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks)Auto-Encoding Variational Bayes
by Kingma et al., ArXiv 2014
[[PDF]](https://arxiv.org/pdf/1312.6114.pdf) [[Code]](https://github.com/AntixK/PyTorch-VAE)Deep Exponential Families
by Ranganath et al., AISTATS 2015
[[PDF]](https://arxiv.org/abs/1411.2581)Weight Uncertainty in Neural Networks
by Blundell et al., ICML 2015
[[PDF]](https://arxiv.org/abs/1505.05424)Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
by Hernandez-Lobato et al., ICML 2015
[[PDF]](http://proceedings.mlr.press/v37/hernandez-lobatoc15.pdf)Variational Dropout and the Local Reparameterization Trick
by Kingma et al., NIPS 2015
[[PDF]](https://arxiv.org/pdf/1506.02557.pdf)The Poisson Gamma Belief Network
by Zhou et al., NIPS 2015
[[PDF]](http://papers.nips.cc/paper/5645-the-poisson-gamma-belief-network)Deep Poisson Factor Modeling
by Henao et al., NIPS 2015
[[PDF]](http://papers.nips.cc/paper/5786-deep-poisson-factor-modeling)Natural-Parameter Networks: A Class of Probabilistic Neural Networks
by Wang et al., NIPS 2016
[[PDF]](http://wanghao.in/paper/NIPS16_NPN.pdf) [[Project Page]](https://github.com/js05212/NPN) [[Code]](https://github.com/js05212/NPN)Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
by Mescheder et al., ICML 2017
[[PDF]](https://arxiv.org/pdf/1701.04722.pdf)Stick-Breaking Variational Autoencoders
by Nalisnick et al., ICLR 2017
[[PDF]](https://openreview.net/forum?id=S1jmAotxg)Bayesian GAN
by Saatchi et al, NIPS 2017
[[PDF]](https://arxiv.org/abs/1705.09558)Neural Expectation Maximization
by Greff et al., NIPS 2017
[[PDF]](https://papers.nips.cc/paper/7246-neural-expectation-maximization.pdf)Lightweight Probabilistic Deep Networks
by Gast et al., CVPR 2018
[[PDF]](http://openaccess.thecvf.com/content_cvpr_2018/html/Gast_Lightweight_Probabilistic_Deep_CVPR_2018_paper.html)Feed-forward Propagation in Probabilistic Neural Networks with Categorical and Max Layers
by Shekhovtsov et al., ICLR 2018
[[PDF]](https://openreview.net/forum?id=SkMuPjRcKQ)Glow: Generative Flow with Invertible 1x1 Convolutions
by Kingma et al., NIPS 2018
[[PDF]](https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf)Evidential Deep Learning to Quantify Classification Uncertainty
by Sensoy et al., NIPS 2018
[[PDF]](https://papers.nips.cc/paper_files/paper/2018/file/a981f2b708044d6fb4a71a1463242520-Paper.pdf)ProbGAN: Towards Probabilistic GAN with Theoretical Guarantees
by He et al., ICLR 2019
[[PDF]](http://wanghao.in/paper/ICLR19_ProbGAN.pdf) [[Project Page]](https://github.com/hehaodele/ProbGAN)Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
by Postels et al., ICCV 2019
[[PDF]](https://arxiv.org/abs/1908.00598)Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
by Dusenberry et al., ICML 2020
[[PDF]](https://proceedings.icml.cc/static/paper_files/icml/2020/5657-Paper.pdf)Neural Clustering Processes
by Pakman et al., ICML 2020
[[PDF]](https://proceedings.icml.cc/static/paper_files/icml/2020/3997-Paper.pdf)Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
by Kristiadi et al., ICML 2020
[[PDF]](http://proceedings.mlr.press/v119/kristiadi20a/kristiadi20a.pdf)Activation-level Uncertainty in Deep Neural Networks
by Morales-Alvarez et al., ICLR 2021
[[PDF]](https://openreview.net/pdf/6d7935927e30fe5bf2be87f8e871229560145392.pdf)Bayesian Deep Learning via Subnetwork Inference
by Daxberger et al., ICML 2021
[[PDF]](http://proceedings.mlr.press/v139/daxberger21a/daxberger21a.pdf)On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks
by Seitzer et al., ICLR 2022
[[PDF]](https://openreview.net/pdf?id=aPOpXlnV1T)Evidential Turing Processes
by Kandemir et al., ICLR 2022
[[PDF]](https://openreview.net/pdf?id=84NMXTHYe-)How Tempering Fixes Data Augmentation in Bayesian Neural Networks
by Bachmann et al., ICML 2022
[[PDF]](https://proceedings.mlr.press/v162/bachmann22a/bachmann22a.pdf)SIMPLE: A Gradient Estimator for k-Subset Sampling
by Ahmed et al., ICLR 2023
[[PDF]](https://openreview.net/forum?id=GPJVuyX4p_h)Collapsed Inference for Bayesian Deep Learning
by Zeng et al., NeurIPS 2023
[[PDF]](https://arxiv.org/pdf/2306.09686.pdf)Variational Imbalanced Regression: Fair Uncertainty Quantification via Probabilistic Smoothing
by Wang et al., NeurIPS 2023
[[PDF]](http://www.wanghao.in/paper/NIPS23_VIR.pdf)