Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jtescher/descriptive-statistics
This gem calculates descriptive statistics including measures of central tendency (e.g. mean, median mode), dispersion (e.g. range, and quartiles), and spread (e.g variance and standard deviation).
https://github.com/jtescher/descriptive-statistics
Last synced: 28 days ago
JSON representation
This gem calculates descriptive statistics including measures of central tendency (e.g. mean, median mode), dispersion (e.g. range, and quartiles), and spread (e.g variance and standard deviation).
- Host: GitHub
- URL: https://github.com/jtescher/descriptive-statistics
- Owner: jtescher
- License: mit
- Archived: true
- Created: 2012-09-29T19:23:33.000Z (about 12 years ago)
- Default Branch: master
- Last Pushed: 2020-03-15T00:33:42.000Z (over 4 years ago)
- Last Synced: 2024-10-31T14:47:19.301Z (about 1 month ago)
- Language: Ruby
- Homepage: http://rubygems.org/gems/descriptive-statistics
- Size: 47.9 KB
- Stars: 106
- Watchers: 11
- Forks: 14
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
- data-science-with-ruby - descriptive-statistics
README
# DescriptiveStatistics
This gem calculates descriptive statistics including measures of central tendency (e.g. mean, median mode), dispersion
(e.g. range, and quartiles), and spread (e.g variance and standard deviation).Tested against 2.4.9, 2.5.7, 2.6.5, 2.7.0, ruby-head, jruby-9.1.9.0, jruby-head and rubinius-4.7.
[![Build Status](https://secure.travis-ci.org/jtescher/descriptive-statistics.png)](http://travis-ci.org/jtescher/descriptive-statistics)
[![Dependency Status](https://gemnasium.com/jtescher/descriptive-statistics.png)](https://gemnasium.com/jtescher/descriptive-statistics)
[![Code Climate](https://codeclimate.com/github/jtescher/descriptive-statistics.png)](https://codeclimate.com/github/jtescher/descriptive-statistics)
[![Gem Version](https://badge.fury.io/rb/descriptive-statistics.png)](http://badge.fury.io/rb/descriptive-statistics)
[![Coverage Status](https://coveralls.io/repos/jtescher/descriptive-statistics/badge.png)](https://coveralls.io/r/jtescher/descriptive-statistics)## Installation
Add this line to your application's Gemfile:
gem 'descriptive-statistics'
And then execute:
$ bundle
Or install it yourself as:
$ gem install descriptive-statistics
## Usage
### Central Tendency:
```ruby
stats = DescriptiveStatistics::Stats.new([1,1,2,3,10])
stats.mean #=> 3.4
stats.median #=> 2
stats.mode #=> 1
```### Dispersion:
```ruby
stats = DescriptiveStatistics::Stats.new([1,1,2,3,10])
stats.range #=> 9
stats.min #=> 1
stats.max #=> 10
stats.percentile_from_value(10) #=> 80
stats.value_from_percentile(60) #=> 3
```### Spread:
```ruby
stats = DescriptiveStatistics::Stats.new([1,1,2,3,10])
stats.variance #=> 14.299999999999999
stats.population_variance #=> 11.44
stats.standard_deviation #=> 3.7815340802378072
stats.relative_standard_deviation #=> 99.47961485463391
```### Other Measures:
```ruby
stats = DescriptiveStatistics::Stats.new([1,1,2,3,10])
stats.skewness #=> 1.188328915820243
stats.kurtosis #=> 2.405613966453127
```## Alternative Usage (Not suggested)
If you want to monkey patch descriptive statistics methods into Enumerable, you can use the following:(e.g. config/initializers/descriptive_statistics_monkey_patch.rb)
```ruby
require 'descriptive-statistics'module Enumerable
include DescriptiveStatistics# Warning: hacky evil meta programming. Required because classes that have already included
# Enumerable will not otherwise inherit the statistics methods.
DescriptiveStatistics.instance_methods.each do |m|
define_method(m, DescriptiveStatistics.instance_method(m))
end
end
```Then you can use these methods directly on Arrays:
```ruby
[1,1,2,3,10].mean #=> 3.4
```## Contributing
1. Fork it
2. Create your feature branch (`git checkout -b my-new-feature`)
3. Commit your changes (`git commit -am 'Add some feature'`)
4. Push to the branch (`git push origin my-new-feature`)
5. Create new Pull Request