Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jtlicardo/bert-finetuned
Fine-tuning a token classification BERT model
https://github.com/jtlicardo/bert-finetuned
bert huggingface-transformers
Last synced: about 1 month ago
JSON representation
Fine-tuning a token classification BERT model
- Host: GitHub
- URL: https://github.com/jtlicardo/bert-finetuned
- Owner: jtlicardo
- Created: 2022-12-10T17:03:22.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2024-06-17T11:01:02.000Z (6 months ago)
- Last Synced: 2024-06-17T12:29:40.750Z (6 months ago)
- Topics: bert, huggingface-transformers
- Language: Jupyter Notebook
- Homepage:
- Size: 274 KB
- Stars: 4
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Finetuning BERT
[https://huggingface.co/jtlicardo/bert-finetuned-bpmn](https://huggingface.co/jtlicardo/bert-finetuned-bpmn)
A BERT model fine-tuned to extract BPMN agents and tasks in a process.![image](image.png)
---
It achieves the following results on the evaluation set:
- Loss: 0.2656
- Precision: 0.7314
- Recall: 0.8366
- F1: 0.7805
- Accuracy: 0.8939### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.8437 | 0.1899 | 0.3203 | 0.2384 | 0.7005 |
| No log | 2.0 | 20 | 0.4967 | 0.5421 | 0.7582 | 0.6322 | 0.8417 |
| No log | 3.0 | 30 | 0.3403 | 0.6719 | 0.8431 | 0.7478 | 0.8867 |
| No log | 4.0 | 40 | 0.2821 | 0.6923 | 0.8235 | 0.7522 | 0.8903 |
| No log | 5.0 | 50 | 0.2656 | 0.7314 | 0.8366 | 0.7805 | 0.8939 |### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2