Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/jtolio/sheepda

A lambda calculus interpreter. GET IT?
https://github.com/jtolio/sheepda

Last synced: 3 months ago
JSON representation

A lambda calculus interpreter. GET IT?

Awesome Lists containing this project

README

        

# sheepda

A memoizing pure
[lambda calculus](https://en.wikipedia.org/wiki/Lambda_calculus) interpreter
in Go with only two builtins:

* `PRINT_BYTE` - takes a
[Church-encoded](https://en.wikipedia.org/wiki/Church_encoding) numeral
and writes the corresponding byte to the configured output stream.
* `READ_BYTE` - returns a Church-encoded pair value, where the first element
is a Church-encoded boolean about whether or not any data was read, and the
second element is a Church-encoded numeral representing the byte that was
read if successful, and 0 otherwise. The only reason no data was read was
if EOF was reached. Other errors stop execution.

When run in `output` mode, `PRINT_BYTE` goes to `stdout`. `READ_BYTE` comes
from `stdin`. If you use the sheepda library from your own Go program instead,
you can configure input and output to be any `io.Writer` or `io.Reader`, in
addition to defining your own builtins.

### Links

* [In-browser web playground!](https://jtolio.github.io/sheepda/) (courtesy of [GopherJS](https://github.com/gopherjs/gopherjs))
* [Lambda calculus documentation and how to write fizz buzz](http://www.jtolio.com/writing/2017/03/whiteboard-problems-in-pure-lambda-calculus/)
* [Go library documentation for sheepda](https://godoc.org/github.com/jtolio/sheepda)
* [Standard prelude](interview-probs/prelude.shp) - a sort of standard library, built in lambda calculus

### Usage

```
cd $(mktemp -d)
GOPATH=$(pwd) go get github.com/jtolio/sheepda/bin/sheepda
bin/sheepda output src/github.com/jtolio/sheepda/interview-probs/{prelude,hello-world}.shp
```

```
Usage: bin/sheepda [-a] [ ...]
-a if provided, skip assignments when pretty-printing in parsed mode
```

### Examples

Check out
[interview-probs](interview-probs/) and especially [prelude.shp](interview-probs/prelude.shp)
for how some abstraction towers can be built up for solving common whiteboard
problems in pure lambda calculus.

Here is Fizzbuzz in pure lambda calculus with only `PRINT_BYTE` added. Much of
the definition is building up supporting structures like lists and numbers and
logic.

```
((λU.((λY.((λvoid.((λ0.((λsucc.((λ+.((λ*.((λ1.((λ2.((λ3.((λ4.((λ5.((λ6.((λ7.
((λ8.((λ9.((λ10.((λnum.((λtrue.((λfalse.((λif.((λnot.((λand.((λmake-pair.
((λpair-first.((λpair-second.((λzero?.((λpred.((λ-.((λeq?.((λ/.((λ%.((λnil.
((λnil?.((λcons.((λcar.((λcdr.((λdo2.((λfor.((λprint-byte.((λprint-list.
((λprint-newline.((λzero-byte.((λitoa.((λfizzmsg.((λbuzzmsg.((λfizzbuzzmsg.
((λfizzbuzz.(fizzbuzz (((num 1) 0) 0))) λn.((for n) λi.((do2 (((if (zero?
((% i) 3))) λ_.(((if (zero? ((% i) 5))) λ_.(print-list fizzbuzzmsg)) λ_.
(print-list fizzmsg))) λ_.(((if (zero? ((% i) 5))) λ_.(print-list buzzmsg))
λ_.(print-list (itoa i))))) (print-newline nil))))) ((cons (((num 0) 7) 0))
((cons (((num 1) 0) 5)) ((cons (((num 1) 2) 2)) ((cons (((num 1) 2) 2)) ((cons
(((num 0) 9) 8)) ((cons (((num 1) 1) 7)) ((cons (((num 1) 2) 2)) ((cons (((num
1) 2) 2)) nil)))))))))) ((cons (((num 0) 6) 6)) ((cons (((num 1) 1) 7)) ((cons
(((num 1) 2) 2)) ((cons (((num 1) 2) 2)) nil)))))) ((cons (((num 0) 7) 0))
((cons (((num 1) 0) 5)) ((cons (((num 1) 2) 2)) ((cons (((num 1) 2) 2))
nil)))))) λn.(((Y λrecurse.λn.λresult.(((if (zero? n)) λ_.(((if (nil? result))
λ_.((cons zero-byte) nil)) λ_.result)) λ_.((recurse ((/ n) 10)) ((cons
((+ zero-byte) ((% n) 10))) result)))) n) nil))) (((num 0) 4) 8))) λ_.
(print-byte (((num 0) 1) 0)))) (Y λrecurse.λl.(((if (nil? l)) λ_.void) λ_.
((do2 (print-byte (car l))) (recurse (cdr l))))))) PRINT_BYTE)) λn.λf.((((Y
λrecurse.λremaining.λcurrent.λf.(((if (zero? remaining)) λ_.void) λ_.((do2 (f
current)) (((recurse (pred remaining)) (succ current)) f)))) n) 0) f))) λa.λb.
b)) λl.(pair-second (pair-second l)))) λl.(pair-first (pair-second l)))) λe.λl.
((make-pair true) ((make-pair e) l)))) λl.(not (pair-first l)))) ((make-pair
false) void))) λm.λn.((- m) ((* ((/ m) n)) n)))) (Y λ/.λm.λn.(((if ((eq? m) n))
λ_.1) λ_.(((if (zero? ((- m) n))) λ_.0) λ_.((+ 1) ((/ ((- m) n)) n))))))) λm.
λn.((and (zero? ((- m) n))) (zero? ((- n) m))))) λm.λn.((n pred) m))) λn.
((((λn.λf.λx.(pair-second ((n λp.((make-pair (f (pair-first p))) (pair-first
p))) ((make-pair x) x)))) n) succ) 0))) λn.((n λ_.false) true))) λp.(p false)))
λp.(p true))) λx.λy.λt.((t x) y))) λa.λb.((a b) false))) λp.λt.λf.((p f) t)))
λp.λa.λb.(((p a) b) void))) λt.λf.f)) λt.λf.t)) λa.λb.λc.((+ ((+ ((* ((* 10)
10)) a)) ((* 10) b))) c))) (succ 9))) (succ 8))) (succ 7))) (succ 6))) (succ
5))) (succ 4))) (succ 3))) (succ 2))) (succ 1))) (succ 0))) λm.λn.λx.(m (n
x)))) λm.λn.λf.λx.((((m succ) n) f) x))) λn.λf.λx.(f ((n f) x)))) λf.λx.x))
λx.(U U))) (U λh.λf.(f λx.(((h h) f) x))))) λf.(f f))
```

Formatted and without dependent subproblems:

```
fizzbuzz = λn.
(for n λi.
(do2
(if (zero? (% i 3))
λ_. (if (zero? (% i 5))
λ_. (print-list fizzbuzzmsg)
λ_. (print-list fizzmsg))
λ_. (if (zero? (% i 5))
λ_. (print-list buzzmsg)
λ_. (print-list (itoa i))))
(print-newline nil)))
```

### Grammar

```
::=
| `λ` `.`
| `(` `)`
```

Note that the backslash character `\` can be used instead of the lambda
character `λ`.

### Parser-level syntax sugar

Two forms of syntax sugar are understood by the parser.

#### Assignments

Every valid lambda calculus program consists of exactly one expression, but
this doesn't lend itself to easy construction. So, before the main expression,
if

```
`=`

```

is encountered, it is turned into a function call application to define the
variable, like so:

```
`(` `λ` `.` `)`
```

Example:

```
true = λx.λy.x

(true a b)
```

is turned into

```
(λtrue.(true a b) λx.λy.x)
```

Every valid program is therefore a list of zero or more assignments followed
by a single expression.

#### Currying

If more than one argument is encountered, it is assumed to be
[curried](https://en.wikipedia.org/wiki/Currying).
For example, instead of chaining arguments like this:

```
((((f a1) a2) a3) a4)
```

you can instead use the form:

```
(f a1 a2 a3 a4)
```

### License

Copyright (C) 2017 JT Olds. See LICENSE for copying information.