Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/julesbelveze/time-series-autoencoder

PyTorch Dual-Attention LSTM-Autoencoder For Multivariate Time Series
https://github.com/julesbelveze/time-series-autoencoder

attention-mechanisms autoencoder forecasting lstm-autoencoder multivariate-timeseries pytorch time-series

Last synced: 2 days ago
JSON representation

PyTorch Dual-Attention LSTM-Autoencoder For Multivariate Time Series

Awesome Lists containing this project

README

        

LSTM-autoencoder with attentions for multivariate time series


Hits

This repository contains an autoencoder for multivariate time series forecasting.
It features two attention mechanisms described
in *[A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction](https://arxiv.org/abs/1704.02971)*
and was inspired by [Seanny123's repository](https://github.com/Seanny123/da-rnn).

![Autoencoder architecture](autoenc_architecture.png)

## Download and dependencies

To clone the repository please run:

```
git clone https://github.com/JulesBelveze/time-series-autoencoder.git
```

Use uv

Then install `uv`
```shell
# install uv
curl -LsSf https://astral.sh/uv/install.sh | sh # linux/mac
# or
brew install uv # mac with homebrew
```

# setup environment and install dependencies
```bash
cd time-series-autoencoder
uv venv
uv pip sync pyproject.toml
```

Install directly from requirements.txt

```shell
pip install -r requirements.txt
```

## Usage

The project uses [Hydra](https://hydra.cc/docs/intro/) as a configuration parser. You can simply change the parameters
directly within your `.yaml` file or you can override/set parameter using flags (for a complete guide please refer to
the docs).

```
python3 main.py -cn=[PATH_TO_FOLDER_CONFIG] -cp=[CONFIG_NAME]
```

Optional arguments:

```
-h, --help show this help message and exit
--batch-size BATCH_SIZE
batch size
--output-size OUTPUT_SIZE
size of the ouput: default value to 1 for forecasting
--label-col LABEL_COL
name of the target column
--input-att INPUT_ATT
whether or not activate the input attention mechanism
--temporal-att TEMPORAL_ATT
whether or not activate the temporal attention
mechanism
--seq-len SEQ_LEN window length to use for forecasting
--hidden-size-encoder HIDDEN_SIZE_ENCODER
size of the encoder's hidden states
--hidden-size-decoder HIDDEN_SIZE_DECODER
size of the decoder's hidden states
--reg-factor1 REG_FACTOR1
contribution factor of the L1 regularization if using
a sparse autoencoder
--reg-factor2 REG_FACTOR2
contribution factor of the L2 regularization if using
a sparse autoencoder
--reg1 REG1 activate/deactivate L1 regularization
--reg2 REG2 activate/deactivate L2 regularization
--denoising DENOISING
whether or not to use a denoising autoencoder
--do-train DO_TRAIN whether or not to train the model
--do-eval DO_EVAL whether or not evaluating the mode
--data-path DATA_PATH
path to data file
--output-dir OUTPUT_DIR
name of folder to output files
--ckpt CKPT checkpoint path for evaluation
```

## Features

* handles multivariate time series
* attention mechanisms
* denoising autoencoder
* sparse autoencoder

## Examples

You can find under the `examples` scripts to train the model in both cases:

* reconstruction: the dataset can be found [here](https://gist.github.com/JulesBelveze/99ecdbea62f81ce647b131e7badbb24a)
* forecasting: the dataset can be found [here](https://gist.github.com/JulesBelveze/e9997b9b0b68101029b461baf698bd72)