Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/juliaai/learnapi.jl
A Julia interface for training and applying models in machine learning and statistics
https://github.com/juliaai/learnapi.jl
machine-learning-api
Last synced: 7 days ago
JSON representation
A Julia interface for training and applying models in machine learning and statistics
- Host: GitHub
- URL: https://github.com/juliaai/learnapi.jl
- Owner: JuliaAI
- License: mit
- Created: 2022-07-27T23:29:43.000Z (over 2 years ago)
- Default Branch: dev
- Last Pushed: 2024-10-30T05:47:38.000Z (14 days ago)
- Last Synced: 2024-10-30T08:39:14.634Z (14 days ago)
- Topics: machine-learning-api
- Language: Julia
- Homepage:
- Size: 2.25 MB
- Stars: 34
- Watchers: 4
- Forks: 2
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# LearnAPI.jl
A base Julia interface for machine learning and statistics
[![Lifecycle:Maturing](https://img.shields.io/badge/Lifecycle-Maturing-007EC6)](ROADMAP.md)
[![Build Status](https://github.com/JuliaAI/LearnAPI.jl/workflows/CI/badge.svg)](https://github.com/JuliaAI/LearnAPI.jl/actions)
[![codecov](https://codecov.io/gh/JuliaAI/LearnAPI.jl/graph/badge.svg?token=9IWT9KYINZ)](https://codecov.io/gh/JuliaAI/LearnAPI.jl?branch=dev)
[![Docs](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliaai.github.io/LearnAPI.jl/dev/)Comprehensive documentation is [here](https://juliaai.github.io/LearnAPI.jl/dev/).
New contributions welcome. See the [road map](ROADMAP.md).
## Code snippet
Configure a machine learning algorithm:
```julia
julia> ridge = Ridge(lambda=0.1)
```Inspect available functionality:
```
julia> LearnAPI.functions(ridge)
(:(LearnAPI.fit), :(LearnAPI.learner), :(LearnAPI.strip), :(LearnAPI.obs),
:(LearnAPI.features), :(LearnAPI.target), :(LearnAPI.predict), :(LearnAPI.coefficients))
```Train:
```julia
julia> model = fit(ridge, data)
```Predict:
```julia
julia> predict(model, data)[1]
"virginica"
```Predict a probability distribution ([proxy](https://juliaai.github.io/LearnAPI.jl/dev/kinds_of_target_proxy/#proxy_types) for the target):
```julia
julia> predict(model, Distribution(), data)[1]
UnivariateFinite{Multiclass{3}}(setosa=>0.0, versicolor=>0.25, virginica=>0.75)
```## Credits
Created by Anthony Blaom, in cooperation with Cameron Bieganek and other [members of the
Julia
community](https://discourse.julialang.org/t/ann-learnapi-jl-proposal-for-a-basement-level-machine-learning-api/93048).