Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/juliagpu/daggergpu.jl
GPU integrations for Dagger.jl
https://github.com/juliagpu/daggergpu.jl
dagger gpu heterogeneous-computing
Last synced: about 2 months ago
JSON representation
GPU integrations for Dagger.jl
- Host: GitHub
- URL: https://github.com/juliagpu/daggergpu.jl
- Owner: JuliaGPU
- License: other
- Created: 2020-04-04T18:13:21.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-08-26T19:29:03.000Z (4 months ago)
- Last Synced: 2024-08-26T22:45:55.776Z (4 months ago)
- Topics: dagger, gpu, heterogeneous-computing
- Language: Julia
- Homepage:
- Size: 60.5 KB
- Stars: 49
- Watchers: 7
- Forks: 11
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
# DaggerGPU
**GPU integrations for Dagger.jl**
DaggerGPU.jl makes use of the `Dagger.Processor` infrastructure to dispatch Dagger kernels to NVIDIA, AMD, and Apple GPUs, via CUDA.jl, AMDGPU.jl, and Metal.jl respectively. Usage is simple: `add` or `dev` DaggerGPU.jl and CUDA.jl/AMDGPU.jl/Metal.jl appropriately, load it with `using DaggerGPU`, and add `DaggerGPU.CuArrayDeviceProc`/`DaggerGPU.ROCArrayProc`/`DaggerGPU.MtlArrayDeviceProc` to your scheduler or thunk options (see Dagger.jl documentation for details on how to do this).
DaggerGPU.jl is still experimental, but we welcome GPU-owning users to try it out and report back on any issues or sharp edges that they encounter. When filing an issue about DaggerGPU.jl, please provide:
- The complete error message and backtrace
- Julia version
- GPU vendor and model
- CUDA/AMDGPU version(s)