https://github.com/juliamath/doublefloats.jl
math with more good bits
https://github.com/juliamath/doublefloats.jl
accuracy doubledouble extended-precision floating-point julia math performance precision
Last synced: 1 day ago
JSON representation
math with more good bits
- Host: GitHub
- URL: https://github.com/juliamath/doublefloats.jl
- Owner: JuliaMath
- License: mit
- Created: 2018-01-26T02:04:47.000Z (over 7 years ago)
- Default Branch: main
- Last Pushed: 2025-03-26T16:13:45.000Z (about 2 months ago)
- Last Synced: 2025-05-12T13:49:49.268Z (2 days ago)
- Topics: accuracy, doubledouble, extended-precision, floating-point, julia, math, performance, precision
- Language: Julia
- Homepage:
- Size: 3.09 MB
- Stars: 162
- Watchers: 9
- Forks: 33
- Open Issues: 16
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
README
# DoubleFloats.jl
### Math with 85+ accurate bits.
#### Extended precision float and complex types- N.B. `Double64` is the most performant type [β](#involvement)
----
[](https://travis-ci.org/JuliaMath/DoubleFloats.jl) [](http://juliamath.github.io/DoubleFloats.jl/stable/)
[](https://coveralls.io/github/JuliaMath/DoubleFloats.jl?branch=master)
[](https://codecov.io/gh/JuliaMath/DoubleFloats.jl)
[](https://pkgs.genieframework.com?packages=DoubleFloats&startdate=2015-12-30&enddate=2040-12-31)## Installation
```julia
pkg> add DoubleFloats
```
or
```julia
julia> using Pkg
julia> Pkg.add("DoubleFloats")
```## More Performant Than Float128, BigFloat
_these results are from BenchmarkTools, on one machine_
There is another package, Quadmath.jl, which exports Float128 from GNU’s libquadmath. Float128s have 6 more significant bits than Double64s, and a much wider exponent range (Double64s exponents have the same range as Float64s). Big128 is BigFloat after setprecision(BigFloat, 128).
Benchmarking: vectors (`v`) of 1000 values and 50x50 matrices (`m`).
| | Double64 | Float128 | Big128 | | Double64 | Float128 | Big128 |
|:----------|:----------:|:--------:|:--------:|:-----------|:--------:|:---------:|:-------:|
|`dot(v,v)` | 1 | 3 | 7 | `exp.(m)` | 1 | 2 | 6 |
|`v .+ v` | 1 | 7 | 16 | `m * m` | 1 | 3 | 9 |
|`v .* v` | 1 | 12 | 25 | `det(m)` | 1 | 5 | 11 |relative performance: smaller is faster, the larger number takes proportionately longer.
----
## Examples
### Double64, Double32, Double16
```julia
julia> using DoubleFloatsjulia> dbl64 = sqrt(Double64(2)); 1 - dbl64 * inv(dbl64)
0.0
julia> dbl32 = sqrt(Double32(2)); 1 - dbl32 * inv(dbl32)
0.0
julia> dbl16 = sqrt(Double16(2)); 1 - dbl16 * inv(dbl16)
0.0julia> typeof(ans) === Double16
true
```
note: floating-point constants must be used with care,
they are evaluated as Float64 values before additional processing
```julia
julia> Double64(0.2)
0.2
julia> showall(ans)
2.0000000000000001110223024625156540e-01julia> Double64(2)/10
0.2
julia> showall(ans)
1.9999999999999999999999999999999937e-01julia> df64"0.2"
0.2
julia> showall(ans)
1.9999999999999999999999999999999937e-01
```### Complex functions
```juliajulia> x = ComplexDF64(sqrt(df64"2"), cbrt(df64"3"))
1.4142135623730951 + 1.4422495703074083im
julia> showall(x)
1.4142135623730950488016887242096816 + 1.4422495703074083823216383107800998imjulia> y = acosh(x)
1.402873733241199 + 0.8555178360714634imjulia> x - cosh(y)
7.395570986446986e-32 + 0.0im
```
### show, string, parse
```julia
julia> using DoubleFloatsjulia> x = sqrt(Double64(2)) / sqrt(Double64(6))
0.5773502691896257julia> string(x)
"5.7735026918962576450914878050194151e-01"julia> show(IOContext(Base.stdout,:compact=>false),x)
5.7735026918962576450914878050194151e-01julia> showall(x)
0.5773502691896257645091487805019415julia> showtyped(x)
Double64(0.5773502691896257, 3.3450280739356326e-17)julia> showtyped(parse(Double64, stringtyped(x)))
Double64(0.5773502691896257, 3.3450280739356326e-17)julia> Meta.parse(stringtyped(x))
:(Double64(0.5773502691896257, 3.3450280739356326e-17))julia> x = ComplexDF32(sqrt(df32"2"), cbrt(df32"3"))
1.4142135 + 1.4422495imjulia> string(x)
"1.414213562373094 + 1.442249570307406im"julia> stringtyped(x)
"ComplexD32(Double32(1.4142135, 2.4203233e-8), Double32(1.4422495, 3.3793125e-8))"
```----
see https://juliamath.github.io/DoubleFloats.jl/stable/ for more information
----
## Accuracy
results for f(x), x in 0..1
| function | abserr | relerr |
|:--------:|:----------:|:----------:|
| exp | 1.0e-31 | 1.0e-31 |
| log | 1.0e-31 | 1.0e-31 |
| | | |
| sin | 1.0e-31 | 1.0e-31 |
| cos | 1.0e-31 | 1.0e-31 |
| tan | 1.0e-31 | 1.0e-31 |
| | | |
| asin | 1.0e-31 | 1.0e-31 |
| acos | 1.0e-31 | 1.0e-31 |
| atan | 1.0e-31 | 1.0e-31 |
| | | |
| sinh | 1.0e-31 | 1.0e-29 |
| cosh | 1.0e-31 | 1.0e-31 |
| tanh | 1.0e-31 | 1.0e-29 |
| | | |
| asinh | 1.0e-31 | 1.0e-29 |
| atanh | 1.0e-31 | 1.0e-30 |results for f(x), x in 1..2
| function | abserr | relerr |
|:--------:|:----------:|:----------:|
| exp | 1.0e-30 | 1.0e-31 |
| log | 1.0e-31 | 1.0e-31 |
| | | |
| sin | 1.0e-31 | 1.0e-31 |
| cos | 1.0e-31 | 1.0e-28 |
| tan | 1.0e-30 | 1.0e-30 |
| | | |
| atan | 1.0e-31 | 1.0e-31 |
| | | |
| sinh | 1.0e-30 | 1.0e-31 |
| cosh | 1.0e-30 | 1.0e-31 |
| tanh | 1.0e-31 | 1.0e-28 |
| | | |
| asinh | 1.0e-31 | 1.0e-28 |### isapprox
- `isapprox` uses this default `rtol=eps(1.0)^(37/64)`.
## Good Ways To Use This
In addition to simply `using DoubleFloats` and going from there, these two suggestions are easily managed
and will go a long way in increasing the robustness of the work and reliability in the computational results.If your input values are Float64s, map them to Double64s and proceed with your computation. Then unmap your output values as Float64s, do additional work using those Float64s. With Float32 inputs, used Double32s similarly. Where throughput is important, and your algorithms are well-understood, this approach be used with the numerically sensitive parts of your computation only. If you are doing that, be careful to map the inputs to those parts and unmap the outputs from those parts just as described above.
## Questions
Usage questions can be posted on the [Julia Discourse forum][discourse-tag-url]. Use the topic `Numerics` (a "Discipline") and a put the package name, DoubleFloats, in your question ("topic").
## Contributions
Contributions are very welcome, as are feature requests and suggestions. Please open an [issue][issues-url] if you encounter any problems.
----
β: If you want to get involved with moving `Double32` performance forward, great. I would provide guidance. Otherwise, for most purposes you are better off using `Float64` than `Double32` (`Float64` has more significant bits, wider exponent range, and is much faster).
----
[contrib-url]: https://juliamath.github.io/DoubleFloats.jl/latest/man/contributing/
[discourse-tag-url]: https://discourse.julialang.org/tags/doublefloats
[gitter-url]: https://gitter.im/juliamath/users[docs-current-img]: https://img.shields.io/badge/docs-latest-blue.svg
[docs-current-url]: https://juliamath.github.io/DoubleFloats.jl[codecov-img]: https://codecov.io/gh/JuliaMath/DoubleFloats.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/JuliaMath/DoubleFloats.jl[issues-url]: https://github.com/JuliaMath/DoubleFloats.jl/issues