Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/julvo/reloading
Change Python code while it's running without losing state
https://github.com/julvo/reloading
deep-learning hot-reload hot-reloading interactive keras machine-learning python pytorch utility
Last synced: 2 months ago
JSON representation
Change Python code while it's running without losing state
- Host: GitHub
- URL: https://github.com/julvo/reloading
- Owner: julvo
- License: mit
- Created: 2019-07-12T19:39:49.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-06-15T18:50:01.000Z (7 months ago)
- Last Synced: 2024-10-01T16:07:12.123Z (3 months ago)
- Topics: deep-learning, hot-reload, hot-reloading, interactive, keras, machine-learning, python, pytorch, utility
- Language: Python
- Homepage:
- Size: 615 KB
- Stars: 1,088
- Watchers: 8
- Forks: 31
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
- awesome-starts - julvo/reloading - Change Python code while it's running without losing state (Python)
README
# reloading
[![pypi badge](https://img.shields.io/pypi/v/reloading?color=%230c0)](https://pypi.org/project/reloading/)A Python utility to reload a loop body from source on each iteration without
losing stateUseful for editing source code during training of deep learning models. This lets
you e.g. add logging, print statistics or save the model without restarting the
training and, therefore, without losing the training progress.![Demo](https://github.com/julvo/reloading/blob/master/examples/demo/demo.gif)
## Install
```
pip install reloading
```## Usage
To reload the body of a `for` loop from source before each iteration, simply
wrap the iterator with `reloading`, e.g.
```python
from reloading import reloadingfor i in reloading(range(10)):
# this code will be reloaded before each iteration
print(i)```
To reload a function from source before each execution, decorate the function
definition with `@reloading`, e.g.
```python
from reloading import reloading@reloading
def some_function():
# this code will be reloaded before each invocation
pass
```## Additional Options
Pass the keyword argument `every` to reload only on every n-th invocation or iteration. E.g.
```python
for i in reloading(range(1000), every=10):
# this code will only be reloaded before every 10th iteration
# this can help to speed-up tight loops
pass@reloading(every=10)
def some_function():
# this code with only be reloaded before every 10th invocation
pass
```Pass `forever=True` instead of an iterable to create an endless reloading loop, e.g.
```python
for i in reloading(forever=True):
# this code will loop forever and reload from source before each iteration
pass
```## Examples
Here are the short snippets of how to use reloading with your favourite library.
For complete examples, check out the [examples folder](https://github.com/julvo/reloading/blob/master/examples).### PyTorch
```python
for epoch in reloading(range(NB_EPOCHS)):
# the code inside this outer loop will be reloaded before each epochfor images, targets in dataloader:
optimiser.zero_grad()
predictions = model(images)
loss = F.cross_entropy(predictions, targets)
loss.backward()
optimiser.step()
```
[Here](https://github.com/julvo/reloading/blob/master/examples/pytorch/train.py) is a full PyTorch example.### fastai
```python
@reloading
def update_learner(learner):
# this function will be reloaded from source before each epoch so that you
# can make changes to the learner while the training is running
passclass LearnerUpdater(LearnerCallback):
def on_epoch_begin(self, **kwargs):
update_learner(self.learn)path = untar_data(URLs.MNIST_SAMPLE)
data = ImageDataBunch.from_folder(path)
learn = cnn_learner(data, models.resnet18, metrics=accuracy,
callback_fns=[LearnerUpdater])
learn.fit(10)
```
[Here](https://github.com/julvo/reloading/blob/master/examples/fastai/train.py) is a full fastai example.### Keras
```python
@reloading
def update_model(model):
# this function will be reloaded from source before each epoch so that you
# can make changes to the model while the training is running using
# K.set_value()
passclass ModelUpdater(Callback):
def on_epoch_begin(self, epoch, logs=None):
update_model(self.model)model = Sequential()
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dense(10, activation='softmax'))sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])model.fit(x_train, y_train,
epochs=200,
batch_size=128,
callbacks=[ModelUpdater()])
```
[Here](https://github.com/julvo/reloading/blob/master/examples/keras/train.py) is a full Keras example.### TensorFlow
```python
for epoch in reloading(range(NB_EPOCHS)):
# the code inside this outer loop will be reloaded from source
# before each epoch so that you can change it during training
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in tqdm(train_ds):
train_step(images, labels)
for test_images, test_labels in tqdm(test_ds):
test_step(test_images, test_labels)
```
[Here](https://github.com/julvo/reloading/blob/master/examples/tensorflow/train.py) is a full TensorFlow example.## Testing
Make sure you have `python` and `python3` available in your path, then run:
```
$ python3 reloading/test_reloading.py
```