https://github.com/jungtaekkim/bayeso-benchmarks
Benchmark functions for Bayesian optimization
https://github.com/jungtaekkim/bayeso-benchmarks
Last synced: 2 months ago
JSON representation
Benchmark functions for Bayesian optimization
- Host: GitHub
- URL: https://github.com/jungtaekkim/bayeso-benchmarks
- Owner: jungtaekkim
- License: mit
- Created: 2019-12-17T08:04:29.000Z (over 5 years ago)
- Default Branch: main
- Last Pushed: 2024-03-12T20:14:45.000Z (over 1 year ago)
- Last Synced: 2025-04-12T05:53:38.043Z (2 months ago)
- Language: Python
- Homepage: https://bayeso.org
- Size: 146 MB
- Stars: 33
- Watchers: 2
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-offline-model-based-optimization - **BayesO Benchmarks: Benchmark Functions for Bayesian Optimization** - benchmarks) [📖](https://github.com/mila-iqia/Awesome-Offline-Model-Based-Optimization/blob/main/bibtex/bayeso.txt) (🔗 Benchmark / Task)
- awesome-offline-model-based-optimization - **BayesO Benchmarks: Benchmark Functions for Bayesian Optimization** - benchmarks) [📖](https://github.com/mila-iqia/Awesome-Offline-Model-Based-Optimization/blob/main/bibtex/bayeso.txt) (🔗 Benchmark / Task)
README
![]()
# BayesO Benchmarks: Benchmark Functions for Bayesian Optimization
[](https://doi.org/10.5281/zenodo.7577330)
[](https://github.com/jungtaekkim/bayeso-benchmarks/actions/workflows/pytest.yml)
[](https://opensource.org/licenses/MIT)This repository provides the implementation of benchmark functions for Bayesian optimization.
The details of benchmark functions can be found in [these notes](https://jungtaek.github.io/notes/benchmarks_bo.pdf).* [https://bayeso.org](https://bayeso.org)
## Installation
We recommend installing it with `virtualenv`.
You can choose one of three installation options.* Using PyPI repository (for user installation)
To install the released version in PyPI repository, command it.
```shell
pip install bayeso-benchmarks
```* Using source code (for developer installation)
To install `bayeso-benchmarks` from source code, command the following in the `bayeso-benchmarks` root.
```shell
pip install .
```* Using source code (for editable development mode)
To use editable development mode, command the following in the `bayeso-benchmarks` root.
```shell
pip install -e .
```If you want to install the packages required for development, you can simply add `[dev]`.
For example, `pip install .[dev]` or `pip install -e .[dev]`.* Uninstallation
If you would like to uninstall `bayeso-benchmarks`, command it.
```shell
pip uninstall bayeso-benchmarks
```## Simple Example
A simple example on Branin function is shown below.
```python
from bayeso_benchmarks import Braninobj_fun = Branin()
bounds = obj_fun.get_bounds()X = obj_fun.sample_uniform(100)
Y = obj_fun.output(X)
Y_noise = obj_fun.output_gaussian_noise(X)
```## Citation
```
@misc{KimJ2023software,
author={Kim, Jungtaek},
title={{BayesO Benchmarks}: Benchmark Functions for {Bayesian} Optimization},
doi={10.5281/zenodo.7577330},
url={https://github.com/jungtaekkim/bayeso-benchmarks},
howpublished={\url{https://doi.org/10.5281/zenodo.7577330}},
year={2023}
}
```## License
[MIT License](LICENSE)