Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/junxia97/ProGCL
[ICML 2022] "ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning"
https://github.com/junxia97/ProGCL
contrastive-learning graph-neural-networks graph-self-supervised-learning hard-negative-mining icml-2022
Last synced: 3 months ago
JSON representation
[ICML 2022] "ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning"
- Host: GitHub
- URL: https://github.com/junxia97/ProGCL
- Owner: junxia97
- Created: 2022-05-15T08:46:00.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-06-13T12:18:21.000Z (over 2 years ago)
- Last Synced: 2024-05-13T22:52:55.566Z (9 months ago)
- Topics: contrastive-learning, graph-neural-networks, graph-self-supervised-learning, hard-negative-mining, icml-2022
- Language: Python
- Homepage:
- Size: 33.2 KB
- Stars: 39
- Watchers: 1
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Mixup - [Code
README
# ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning (ICML 2022)
PyTorch implementation for [ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning](https://arxiv.org/abs/2110.02027) accepted by ICML 2022.
## Requirements
* Python 3.7.4
* PyTorch 1.7.0
* torch_geometric 1.5.0
* tqdm
## Training & Evaluation
ProGCL-weight:
```
python train.py --device cuda:0 --dataset Amazon-Computers --param local:amazon-computers.json --mode weight
```
ProGCL-mix:
```
python train.py --device cuda:0 --dataset Amazon-Computers --param local:amazon-computers.json --mode mix
```
## Useful resources for Pretrained Graphs Neural Networks
* The first comprehensive survey on this topic: [A Survey of Pretraining on Graphs: Taxonomy, Methods, and Applications](https://arxiv.org/abs/2202.07893v1)
* [A curated list of must-read papers, open-source pretrained models and pretraining datasets.](https://github.com/junxia97/awesome-pretrain-on-graphs)## Citation
```
@inproceedings{xia2022progcl,
title={ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning},
author={Xia, Jun and Wu, Lirong and Wang, Ge and Li, Stan Z.},
booktitle={International conference on machine learning},
year={2022},
organization={PMLR}
}
```