Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jusiro/constrained_anomaly_segmentation
[MedIA 2022] Constrained unsupervised anomaly segmentation.
https://github.com/jusiro/constrained_anomaly_segmentation
Last synced: 3 months ago
JSON representation
[MedIA 2022] Constrained unsupervised anomaly segmentation.
- Host: GitHub
- URL: https://github.com/jusiro/constrained_anomaly_segmentation
- Owner: jusiro
- License: mit
- Created: 2022-05-25T13:20:42.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-03-28T00:27:35.000Z (almost 2 years ago)
- Last Synced: 2024-05-20T03:18:51.395Z (8 months ago)
- Language: Python
- Homepage:
- Size: 815 KB
- Stars: 17
- Watchers: 1
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Constrained Unsupervised Anomaly Segmentation of Brain Lesions
This repository contains code for unsupervised anomaly segmentation in brain lesions. Specifically, the implemented methods aim to constrain the optimization process to force a VAE to homogenize the activations produced in normal samples.
If you find these methods useful for your research, please consider citing:**J. Silva-Rodríguez, V. Naranjo and J. Dolz, "Looking at the whole picture: constrained unsupervised anomaly segmentation", in British Machine Vision Conference (BMVC), 2021.** [(paper)](https://www.bmvc2021-virtualconference.com/assets/papers/1011.pdf)[(conference)](https://www.bmvc2021-virtualconference.com/conference/papers/paper_1011.html)
**J. Silva-Rodríguez, V. Naranjo and J. Dolz, "Constrained unsupervised anomaly segmentation", Medical Image Analysis, vol. 80, p. 102526, 2022.** [(paper)](https://www.sciencedirect.com/science/article/pii/S1361841522001736)
## GRADCAMCons: looking at the whole picture via size constraints
```
python main.py --dir_out ../data/results/gradCAMCons/ --method gradCAMCons --learning_rate 0.00001 --wkl 1 --wae 1000 --t 10
```## AMCons: entropy maximization on activation maps
```
python main.py --dir_out ../data/results/AMCon/ --method camCons --learning_rate 0.0001 --wkl 10 --wH 0.1
```## Visualizations
## Contact
For further questions or details, please directly reach out Julio Silva-Rodríguez ([email protected])