Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/justmarkham/python-reference
Python Quick Reference
https://github.com/justmarkham/python-reference
jupyter-notebook python quick-reference reference script
Last synced: 1 day ago
JSON representation
Python Quick Reference
- Host: GitHub
- URL: https://github.com/justmarkham/python-reference
- Owner: justmarkham
- Created: 2015-05-19T03:26:46.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2018-11-05T14:05:55.000Z (about 6 years ago)
- Last Synced: 2025-01-24T18:07:16.740Z (9 days ago)
- Topics: jupyter-notebook, python, quick-reference, reference, script
- Language: Jupyter Notebook
- Homepage: http://www.dataschool.io/python-quick-reference/
- Size: 29.3 KB
- Stars: 684
- Watchers: 47
- Forks: 412
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Python Quick Reference
### View as a [Python script](reference.py) or a [Jupyter notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb)
This is the reference guide to Python that I **wish** had existed when I was learning the language.
Here's what I want in a reference guide:
- **High-quality examples** that show the simplest possible usage of a given feature
- **Explanatory comments**, and descriptive variable names that eliminate the need for some comments
- Presented as a **single script (or notebook)**, so that I can keep it open and search it when needed
- **Code that can be run** from top to bottom, with the relevant objects defined nearbyThis is **not** written as a full-fledged Python tutorial, though I ordered the topics such that you can read it like a tutorial (i.e., each topic depends only on material preceding it).
The guide was written using Python 2 but is **fully compatible** with Python 3. Relevant differences between Python 2 and 3 are noted throughout the guide.
### Table of Contents
Click to jump to the relevant section of the script or the notebook:
1. Imports ([script](reference.py#L28), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#1.-Imports))
2. Data Types ([script](reference.py#L52), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#2.-Data-Types))
3. Math ([script](reference.py#L84), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#3.-Math))
4. Comparisons and Boolean Operations ([script](reference.py#L102), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#4.-Comparisons-and-Boolean-Operations))
5. Conditional Statements ([script](reference.py#L121), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#5.-Conditional-Statements))
6. Lists ([script](reference.py#L150), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#6.-Lists))
7. Tuples ([script](reference.py#L224), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#7.-Tuples))
8. Strings ([script](reference.py#L259), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#8.-Strings))
9. Dictionaries ([script](reference.py#L319), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#9.-Dictionaries))
10. Sets ([script](reference.py#L372), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#10.-Sets))
11. Defining Functions ([script](reference.py#L409), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#11.-Defining-Functions))
12. Anonymous (Lambda) Functions ([script](reference.py#L474), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#12.-Anonymous-%28Lambda%29-Functions))
13. For Loops and While Loops ([script](reference.py#L495), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#13.-For-Loops-and-While-Loops))
14. Comprehensions ([script](reference.py#L540), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#14.-Comprehensions))
15. Map and Filter ([script](reference.py#L594), [notebook](http://nbviewer.jupyter.org/github/justmarkham/python-reference/blob/master/reference.ipynb#15.-Map-and-Filter))### Other Python Resources
If you like the general format of this guide, but need **more explanation of each topic**, I highly recommend reading the Appendix of [Python for Data Analysis](http://shop.oreilly.com/product/0636920023784.do). It presents the essentials of the Python language in a clear and focused manner.
If you are looking for a resource that will help you to **learn Python from scratch**, this is [my list of recommended resources](https://github.com/justmarkham/DAT8#python-resources).
### Suggestions or Corrections
If there's a **topic or example** you'd like me to add to this guide, or you notice a **mistake**, please [create a GitHub issue](../../issues) or [leave a blog comment](http://www.dataschool.io/python-quick-reference/).
Thank you!